Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(20): e2221166120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155838

ABSTRACT

Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component of the sex pheromone blend is (Z,E)-9,11-tetradecadienyl acetate, which is lacking in other Spodoptera species. It indicates that a major shift occurred in their common ancestor. It has been shown recently in S. littoralis that this compound is detected with high specificity by an atypical pheromone receptor, named SlitOR5. Here, we studied its evolutionary history through functional characterization of receptors from different Spodoptera species. SlitOR5 orthologs in S. exigua and S. frugiperda exhibited a broad tuning to several pheromone compounds. We evidenced a duplication of OR5 in a common ancestor of S. littoralis and S. litura and found that in these two species, one duplicate is also broadly tuned while the other is specific to (Z,E)-9,11-tetradecadienyl acetate. By using ancestral gene resurrection, we confirmed that this narrow tuning evolved only in one of the two copies issued from the OR5 duplication. Finally, we identified eight amino acid positions in the binding pocket of these receptors whose evolution has been responsible for narrowing the response spectrum to a single ligand. The evolution of OR5 is a clear case of subfunctionalization that could have had a determinant impact in the speciation process in Spodoptera species.


Subject(s)
Moths , Sex Attractants , Animals , Moths/genetics , Moths/metabolism , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Sex Attractants/metabolism , Spodoptera/genetics , Pheromones/genetics , Pheromones/metabolism
2.
Genes (Basel) ; 13(8)2022 07 31.
Article in English | MEDLINE | ID: mdl-36011283

ABSTRACT

Unraveling the origin of molecular pathways underlying the evolution of adaptive traits is essential for understanding how new lineages emerge, including the relative contribution of conserved ancestral traits and newly evolved derived traits. Here, we investigated the evolutionary divergence of sex pheromone communication from moths (mostly nocturnal) to butterflies (mostly diurnal) that occurred ~119 million years ago. In moths, it is the females that typically emit pheromones to attract male mates, but in butterflies males emit pheromones that are used by females for mate choice. The molecular bases of sex pheromone communication are well understood in moths, but they have remained relatively unexplored in butterflies. We used a combination of transcriptomics, real time qPCR, and phylogenetics to identify genes involved in the different steps (i.e., production, regulation, and reception) of sex pheromone communication of the butterfly Bicyclus anynana. Our results show that the biosynthesis and reception of sex pheromones relies both on moth-specific gene families (reductases) and on more ancestral insect gene families (desaturases, olfactory receptors, odorant binding proteins). Interestingly, B. anynana appears to use what was believed to be the moth-specific neuropeptide Pheromone Biosynthesis Activating Neuropeptide (PBAN) for regulating sex pheromone production. Altogether, our results suggest that a mosaic pattern best explains how sex pheromone communication evolved in butterflies, with some molecular components derived from moths, and others conserved from more ancient insect ancestors. This is the first large-scale investigation of the genetic pathways underlying sex pheromone communication in a butterfly.


Subject(s)
Butterflies , Neuropeptides , Pheromones , Sex Attractants , Animal Communication , Animals , Butterflies/genetics , Butterflies/physiology , Female , Male , Moths , Pheromones/genetics , Sex Attractants/genetics
3.
Elife ; 82019 12 10.
Article in English | MEDLINE | ID: mdl-31818368

ABSTRACT

Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication.


Subject(s)
Insect Proteins/metabolism , Moths/metabolism , Receptors, Pheromone/metabolism , Sex Attractants/metabolism , Animals , Behavior, Animal , CRISPR-Cas Systems , Drosophila/genetics , Drosophila/metabolism , Female , Gene Expression Regulation , Gene Knockout Techniques , Insect Proteins/genetics , Lepidoptera/genetics , Lepidoptera/metabolism , Male , Moths/genetics , Receptors, Odorant , Receptors, Pheromone/classification , Receptors, Pheromone/genetics , Spodoptera/genetics , Spodoptera/metabolism , Transcriptome , Xenopus/genetics , Xenopus/metabolism
4.
Proc Biol Sci ; 286(1901): 20182769, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30991931

ABSTRACT

Defended species are often conspicuous and this is thought to be an honest signal of defences, i.e. more toxic prey are more conspicuous. Neotropical butterflies of the large Ithomiini tribe numerically dominate communities of chemically defended butterflies and may thus drive the evolution of mimetic warning patterns. Although many species are brightly coloured, most are transparent to some degree. The evolution of transparency from a warning-coloured ancestor is puzzling as it is generally assumed to be involved in concealment. Here, we show that transparent Ithomiini species are indeed less detectable by avian predators (i.e. concealment). Surprisingly, transparent species are not any less unpalatable, and may in fact be more unpalatable than opaque species, the latter spanning a larger range of unpalatability. We put forth various hypotheses to explain the evolution of weak aposematic signals in these butterflies and other cryptic defended prey. Our study is an important step in determining the selective pressures and constraints that regulate the interaction between conspicuousness and unpalatability.


Subject(s)
Biological Mimicry , Butterflies/physiology , Food Chain , Pigmentation , Taste , Animals , Biological Evolution , Chickens , Color , Species Specificity
5.
Neuroscience ; 396: 66-72, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30458219

ABSTRACT

Drosophila phototransduction occurs in light-sensitive microvilli arranged in a longitudinal structure of the photoreceptor, termed the rhabdomere. Rhodopsin (Rh), isomerized by light, couples to G-protein, which activates phospholipase C (PLC), which in turn cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol (DAG), inositol trisphosphate and H+. This pathway opens the light-dependent channels, transient receptor potential (TRP) and transient receptor potential like (TRPL). PLC and TRP are held together in a protein assembly by the scaffold protein INAD. We report that the channels can be photoactivated in on-cell rhabdomeric patches and in excised patches by DAG. In excised patches, addition of PLC-activator, m-3M3FBS, or G-protein-activator, GTP-γ-S, opened TRP. These reagents were ineffective in PLC-mutant norpA and in the presence of PLC inhibitor U17322. However, DAG activated TRP even when PLC was pharmacologically or mutationally suppressed. These observations indicate that PLC, G-protein, and TRP were retained functional in these patches. DAG also activated TRP in the protein kinase C (PKC) mutant, inaC, excluding the possibility that PKC could mediate DAG-dependent TRP activation. Labeling diacylglycerol kinase (DGK) by fusion of fluorescent mCherry (mCherry-DGK) indicates that DGK, which returns DAG to dark levels, is highly expressed in the microvilli. In excised patches, TRP channels could be light-activated in the presence of GTP, which is required for G-protein activation. The evidence indicates that the proteins necessary for phototransduction are retained functionally after excision and that DAG is necessary and sufficient for TRP opening. This work opens up unique possibilities for studying, in sub-microscopic native membrane patches, the ubiquitous phosphoinositide signaling pathway and its regulatory mechanisms in unprecedented detail.


Subject(s)
Ion Channel Gating/radiation effects , Light , Microvilli/metabolism , Microvilli/radiation effects , Photoreceptor Cells, Invertebrate/cytology , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/radiation effects , Animals , Diacylglycerol Kinase/biosynthesis , Diglycerides/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/isolation & purification , Drosophila Proteins/metabolism , Drosophila Proteins/radiation effects , Drosophila melanogaster , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Membrane Potentials/drug effects , Protein Kinase C/genetics , Signal Transduction/drug effects , Signal Transduction/physiology , Sulfonamides/pharmacology , Transient Receptor Potential Channels/isolation & purification , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...