Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 318: 34-46, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30802472

ABSTRACT

BACKGROUND: Spatial and temporal resolution of brain network activity can be improved by combining different modalities. Functional Magnetic Resonance Imaging (fMRI) provides full brain coverage with limited temporal resolution, while electroencephalography (EEG), estimates cortical activity with high temporal resolution. Combining them may provide improved network characterization. NEW METHOD: We examined relationships between EEG spatiospectral pattern timecourses and concurrent fMRI BOLD signals using canonical hemodynamic response function (HRF) with its 1st and 2nd temporal derivatives in voxel-wise general linear models (GLM). HRF shapes were derived from EEG-fMRI time courses during "resting-state", visual oddball and semantic decision paradigms. RESULTS: The resulting GLM F-maps self-organized into several different large-scale brain networks (LSBNs) often with different timing between EEG and fMRI revealed through differences in GLM-derived HRF shapes (e.g., with a lower time to peak than the canonical HRF). We demonstrate that some EEG spatiospectral patterns (related to concurrent fMRI) are weakly task-modulated. COMPARISON WITH EXISTING METHOD(S): Previously, we demonstrated 14 independent EEG spatiospectral patterns within this EEG dataset, stable across the resting-state, visual oddball and semantic decision paradigms. Here, we demonstrate that their time courses are significantly correlated with fMRI dynamics organized into LSBN structures. EEG-fMRI derived HRF peak appears earlier than the canonical HRF peak, which suggests limitations when assuming a canonical HRF shape in EEG-fMRI. CONCLUSIONS: This is the first study examining EEG-fMRI relationships among independent EEG spatiospectral patterns over different paradigms. The findings highlight the importance of considering different HRF shapes when spatiotemporally characterizing brain networks using EEG and fMRI.


Subject(s)
Cerebrum/physiology , Electroencephalography/methods , Functional Neuroimaging/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Neurovascular Coupling/physiology , Adult , Cerebrum/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Psycholinguistics , Visual Perception/physiology , Young Adult
2.
Brain Topogr ; 31(1): 76-89, 2018 01.
Article in English | MEDLINE | ID: mdl-28875402

ABSTRACT

Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.


Subject(s)
Electroencephalography/statistics & numerical data , Image Interpretation, Computer-Assisted/methods , Algorithms , Brain Mapping/methods , Cluster Analysis , Decision Making/physiology , Electroencephalography/methods , Humans , Magnetic Resonance Imaging , Male , Principal Component Analysis , Psychomotor Performance/physiology , Reproducibility of Results , Signal Processing, Computer-Assisted , Visual Perception/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...