Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1353, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906648

ABSTRACT

Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors.


Subject(s)
Chromosome Aberrations , Neoplasms , Humans , Aneuploidy , Genomic Instability , Chromosomal Instability , Neoplasms/genetics , Karyotype , Chromosome Segregation
2.
Methods Mol Biol ; 2545: 391-399, 2023.
Article in English | MEDLINE | ID: mdl-36720824

ABSTRACT

Cancer cells are frequently affected by large-scale chromosome copy number changes, such as polyploidy or whole chromosome aneuploidy, and thus understanding the consequences of these changes is important for cancer research. In the past, it has been difficult to study the consequences of large-scale genomic changes, especially in pure isogenic populations. Here, we describe two methods to generate tetraploid cells induced either by cytokinesis failure or mitotic slippage. These treatments result in mixed population of diploids and tetraploids that can be analyzed directly. Alternatively, tetraploid populations can be established by single cell clone selection or by fluorescence activated cell sorting. These methods enable to analyze and compare the consequences of whole-genome doubling between the parental cell line, freshly arising tetraploid cells, and post-tetraploid aneuploid clones.


Subject(s)
Polyploidy , Tetraploidy , Humans , Aneuploidy , Cell Line , Cytokinesis/genetics
3.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36399062

ABSTRACT

While testing for genome instability in Drosophila as reported by unscheduled upregulation of UAS-GFP in cells that co-express GAL80 and GAL4, we noticed that, as expected, background levels were low in most developing tissues. However, GFP-positive clones were frequent in the larval brain. Most of these clones originated from central brain neural stem cells. Using imaging-based approaches and genome sequencing, we show that these unscheduled clones do not result from chromosome loss or mutations in GAL80. We have named this phenomenon 'Illuminati'. Illuminati is strongly enhanced in brat tumors and is also sensitive to environmental conditions such as food content and temperature. Illuminati is suppressed by Su(var)2-10, but it is not significantly affected by several modifiers of position effect variegation or Gal4::UAS variegation. We conclude that Illuminati identifies a previously unknown type of functional instability that may have important implications in development and disease.


Subject(s)
Drosophila Proteins , Neural Stem Cells , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Mutation/genetics , Gene Expression , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics
4.
EMBO Mol Med ; 14(9): e15670, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36069081

ABSTRACT

Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs.


Subject(s)
Centrosome , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line , Centrosome/metabolism , Centrosome/pathology , Female , Humans , Ovarian Neoplasms/pathology
6.
Nature ; 604(7904): 146-151, 2022 04.
Article in English | MEDLINE | ID: mdl-35355016

ABSTRACT

Diploid and stable karyotypes are associated with health and fitness in animals. By contrast, whole-genome duplications-doublings of the entire complement of chromosomes-are linked to genetic instability and frequently found in human cancers1-3. It has been established that whole-genome duplications fuel chromosome instability through abnormal mitosis4-8; however, the immediate consequences of tetraploidy in the first interphase are not known. This is a key question because single whole-genome duplication events such as cytokinesis failure can promote tumorigenesis9. Here we find that human cells undergo high rates of DNA damage during DNA replication in the first S phase following induction of tetraploidy. Using DNA combing and single-cell sequencing, we show that DNA replication dynamics is perturbed, generating under- and over-replicated regions. Mechanistically, we find that these defects result from a shortage of proteins during the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes. These findings provide an explanation for the genetic instability landscape that favours tumorigenesis after tetraploidization.


Subject(s)
Chromosomal Instability , DNA Damage , Gene Duplication , S Phase , Tetraploidy , Chromosomal Instability/genetics , DNA Replication , Humans , Karyotype , Mitosis , S Phase/genetics
7.
Curr Biol ; 32(2): 361-373.e6, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34890558

ABSTRACT

Morphogens are secreted molecules that regulate and coordinate major developmental processes, such as cell differentiation and tissue morphogenesis. Depending on the mechanisms of secretion and the nature of their carriers, morphogens act at short and long range. We investigated the paradigmatic long-range activity of Hedgehog (Hh), a well-known morphogen, and its contribution to the growth and patterning of the Drosophila wing imaginal disc. Extracellular vesicles (EVs) contribute to Hh long-range activity; however, the nature, the site, and the mechanisms underlying the biogenesis of these vesicular carriers remain unknown. Here, through the analysis of mutants and a series of Drosophila RNAi-depleted wing imaginal discs using fluorescence and live-imaging electron microscopy, including tomography and 3D reconstruction, we demonstrate that microvilli of the wing imaginal disc epithelium are the site of generation of small EVs that transport Hh across the tissue. Further, we show that the Prominin-like (PromL) protein is critical for microvilli integrity. Together with actin cytoskeleton and membrane phospholipids, PromL maintains microvilli architecture that is essential to promote its secretory function. Importantly, the distribution of Hh to microvilli and its release via these EVs contribute to the proper morphogenesis of the wing imaginal disc. Our results demonstrate that microvilli-derived EVs are carriers for Hh long-range signaling in vivo. By establishing that members of the Prominin protein family are key determinants of microvilli formation and integrity, our findings support the view that microvilli-derived EVs conveying Hh may provide a means for exchanging signaling cues of high significance in tissue development and cancer.


Subject(s)
Drosophila Proteins , Extracellular Vesicles , AC133 Antigen/metabolism , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Extracellular Vesicles/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Imaginal Discs , Microvilli/metabolism , Morphogenesis , Wings, Animal
8.
Pharmaceutics ; 13(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834383

ABSTRACT

Niacinamide (NIA) has been widely used in halting the features of ageing by acting as an antioxidant and preventing dehydration. NIA's physicochemical properties suggest difficulties in surpassing the barrier imposed by the stratum corneum layer to reach the target in the skin. To improve cutaneous delivery of NIA, a hybrid nanogel was designed using carrageenan and polyvinylpyrrolidone polymers combined with jojoba oil as a permeation enhancer. Three different types of transethosomes were prepared by the thin-film hydration method, made distinct by the presence of either an edge activator or a permeation enhancer, to allow for a controlled delivery of NIA. Formulations were characterized by measurements of size, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity, and by evaluating their chemical interactions and morphology. Skin permeation assays were performed using Franz diffusion cells. The hybrid hydrogels exhibited robust, porous, and highly aligned macrostructures, and when present, jojoba oil changed their morphology. Skin permeation studies with transethosomes-loaded hydrogels showed that nanogels per se exhibit a more controlled and enhanced permeation, in particular when jojoba oil was present in the transethosomes. These promising nanogels protected the human keratinocytes from UV radiation, and thus can be added to sunscreens or after-sun lotions to improve skin protection.

9.
Curr Opin Struct Biol ; 66: 74-82, 2021 02.
Article in English | MEDLINE | ID: mdl-33186811

ABSTRACT

Centrosomes are the major microtubule organizing center of animal cells. Centrosomes contribute to timely bipolar spindle assembly during mitosis and participate in the regulation of other processes such as polarity establishment and cell migration. Centrosome numbers are tightly controlled during the cell cycle to ensure that mitosis is initiated with only two centrosomes. Deviations in centrosome number or structure are known to impact cell or tissue homeostasis and can impact different processes as diverse as proliferation, death or disease. Interestingly, defects in centrosome number seem to culminate with common responses, which depend on p53 activation even in different contexts such as development or cancer. p53 is a tumor suppressor gene with essential roles in the maintenance of genetic stability normally stimulated by various cellular stresses. Here, we review current knowledge and discuss how defects in centrosome structure and number can lead to different human pathologies.


Subject(s)
Music , Animals , Cell Cycle , Centrosome , Humans , Microtubule-Organizing Center , Mitosis
10.
Bioessays ; 42(10): e2000105, 2020 10.
Article in English | MEDLINE | ID: mdl-32885500

ABSTRACT

Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.


Subject(s)
Mitosis , Polyploidy , Cell Cycle/genetics , Chromosomes , DNA Damage/genetics , Humans , Mitosis/genetics
11.
J Cell Biol ; 219(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32328633

ABSTRACT

Ploidy variations such as genome doubling are frequent in human tumors and have been associated with genetic instability favoring tumor progression. How polyploid cells deal with increased centrosome numbers and DNA content remains unknown. Using Drosophila neuroblasts and human cancer cells to study mitotic spindle assembly in polyploid cells, we found that most polyploid cells divide in a multipolar manner. We show that even if an initial centrosome clustering step can occur at mitotic entry, the establishment of kinetochore-microtubule attachments leads to spatial chromosome configurations, whereby the final coalescence of supernumerary poles into a bipolar array is inhibited. Using in silico approaches and various spindle and DNA perturbations, we show that chromosomes act as a physical barrier blocking spindle pole coalescence and bipolarity. Importantly, microtubule stabilization suppressed multipolarity by improving both centrosome clustering and pole coalescence. This work identifies inhibitors of bipolar division in polyploid cells and provides a rationale to understand chromosome instability typical of polyploid cancer cells.


Subject(s)
Centrosome/metabolism , Polyploidy , Spindle Apparatus/metabolism , Animals , Cells, Cultured , Drosophila , Female , HEK293 Cells , Humans , Spindle Apparatus/genetics
12.
Biol Cell ; 112(6): 153-172, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32170757

ABSTRACT

Centrosomes nucleate and organise the microtubule cytoskeleton in animal cells. These membraneless organelles are key structures for tissue organisation, polarity and growth. Centrosome dysfunction, defined as deviation in centrosome numbers and/or structural integrity, has major impact on brain size and functionality, as compared with other tissues of the organism. In this review, we discuss the contribution of centrosomes to brain growth during development. We discuss in particular the impact of centrosome dysfunction in Drosophila and mammalian neural stem cell division and fitness, which ultimately underlie brain growth defects.


Subject(s)
Brain/embryology , Brain/metabolism , Centrosome/metabolism , Animals , Chromosome Segregation , Humans , Mitosis , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Spindle Apparatus/metabolism
13.
Curr Biol ; 29(22): 3937-3945.e7, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31708395

ABSTRACT

Polyploidy arises from the gain of complete chromosome sets [1], and it is known to promote cancer genome evolution. Recent evidence suggests that a large proportion of human tumors experience whole-genome duplications (WGDs), which might favor the generation of highly abnormal karyotypes within a short time frame, rather than in a stepwise manner [2-6]. However, the molecular mechanisms linking whole-genome duplication to genetic instability remain poorly understood. Using repeated cytokinesis failure to induce polyploidization of Drosophila neural stem cells (NSCs) (also called neuroblasts [NBs]), we investigated the consequences of polyploidy in vivo. Surprisingly, we found that DNA damage is generated in a subset of nuclei of polyploid NBs during mitosis. Importantly, our observations in flies were confirmed in mouse NSCs (mNSCs) and human cancer cells after acute cytokinesis inhibition. Interestingly, DNA damage occurs in nuclei that were not ready to enter mitosis but were forced to do so when exposed to the mitotic environment of neighboring nuclei within the same cell. Additionally, we found that polyploid cells are cell-cycle asynchronous and forcing cell-cycle synchronization was sufficient to lower the levels of DNA damage generated during mitosis. Overall, this work supports a model in which DNA damage at mitotic entry can generate DNA structural abnormalities that might contribute to the onset of genetic instability.


Subject(s)
Cell Cycle/physiology , Cytokinesis/genetics , DNA Damage/genetics , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cytokinesis/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mitosis/genetics , Neural Stem Cells/metabolism , Polyploidy
14.
Curr Biol ; 29(18): 3072-3080.e5, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31495582

ABSTRACT

Centromeres and centrosomes are crucial mitotic players. Centromeres are unique chromosomal sites characterized by the presence of the histone H3-variant centromere protein A (CENP-A) [1]. CENP-A recruits the majority of centromere components, collectively named the constitutive centromere associated network (CCAN) [2]. The CCAN is necessary for kinetochore assembly, a multiprotein complex that attaches spindle microtubules (MTs) and is required for chromosome segregation [3]. In most animal cells, the dominant site for MT nucleation in mitosis are the centrosomes, which are composed of two centrioles, surrounded by a protein-rich matrix of electron-dense pericentriolar material (PCM) [4]. The PCM is the site of MT nucleation during mitosis [5]. Even if centromeres and centrosomes are connected via MTs in mitosis, it is not known whether defects in either one of the two structures have an impact on the function of the other. Here, using high-resolution microscopy combined with rapid removal of CENP-A in human cells, we found that perturbation of centromere function impacts mitotic spindle pole integrity. This includes release of MT minus-ends from the centrosome, leading to PCM dispersion and centriole mis-positioning at the spindle poles. Mechanistically, we show that these defects result from abnormal spindle MT dynamics due to defective kinetochore-MT attachments. Importantly, restoring mitotic spindle pole integrity following centromere inactivation lead to a decrease in the frequency of chromosome mis-segregation. Overall, our work identifies an unexpected relationship between centromeres and maintenance of the mitotic pole integrity necessary to ensure mitotic accuracy and thus to maintain genetic stability.


Subject(s)
Centromere Protein A/metabolism , Centromere/metabolism , Spindle Apparatus/metabolism , Cell Line , Centrioles/metabolism , Centromere/physiology , Centromere Protein A/physiology , Centrosome/metabolism , Centrosome/physiology , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/physiology , Histones/metabolism , Humans , Kinetochores/metabolism , Kinetochores/physiology , Microtubules/metabolism , Mitosis/physiology , Spindle Apparatus/physiology , Spindle Poles/metabolism
15.
Curr Biol ; 29(18): 2993-3005.e9, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31495584

ABSTRACT

A functional bipolar spindle is essential to segregate chromosomes correctly during mitosis. Across organisms and cell types, spindle architecture should be optimized to promote error-free divisions. However, it remains to be investigated whether mitotic spindle morphology adapts to changes in tissue properties, typical of embryonic development, in order to ensure different tasks, such as spindle positioning and chromosome segregation. We have characterized mitotic spindles in neural stem cells (NSCs) of the embryonic developing mouse neocortex. Surprisingly, we found a switch in spindle morphology from early to late neurogenic stages, which relies on an increase in inner spindle microtubule density and stability. Mechanistically, we identified the microtubule-associated protein TPX2 as one determinant of spindle shape, contributing not only to its robustness but also to correct chromosome segregation upon mitotic challenge. Our findings highlight a possible causal relationship between spindle architecture and mitotic accuracy with likely implications in brain size regulation.


Subject(s)
Chromosome Segregation/physiology , Microtubules/metabolism , Spindle Apparatus/metabolism , Animals , Brain/metabolism , Cell Cycle Proteins/metabolism , Chromosome Segregation/genetics , Female , Kinetochores/metabolism , Male , Mammals/genetics , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Microtubules/physiology , Mitosis/physiology , Neural Stem Cells/metabolism , Neurogenesis/physiology , Pregnancy , Spindle Apparatus/physiology
16.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31130353

ABSTRACT

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Subject(s)
Cdh1 Proteins/metabolism , Centrioles/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Neural Stem Cells/physiology , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/physiology , Animals , Cdh1 Proteins/genetics , Cell Cycle , Cells, Cultured , Centrosome/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Male , Neural Stem Cells/cytology , Phosphorylation , Protein Serine-Threonine Kinases/genetics
17.
J Cell Biol ; 217(10): 3416-3430, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30082296

ABSTRACT

Mouse female meiotic spindles assemble from acentriolar microtubule-organizing centers (aMTOCs) that fragment into discrete foci. These are further sorted and clustered to form spindle poles, thus providing balanced forces for faithful chromosome segregation. To assess the impact of aMTOC biogenesis on spindle assembly, we genetically induced their precocious fragmentation in mouse oocytes using conditional overexpression of Plk4, a master microtubule-organizing center regulator. Excessive microtubule nucleation from these fragmented aMTOCs accelerated spindle assembly dynamics. Prematurely formed spindles promoted the breakage of three different fragilized bivalents, generated by the presence of recombined Lox P sites. Reducing the density of microtubules significantly diminished the extent of chromosome breakage. Thus, improper spindle forces can lead to widely described yet unexplained chromosomal structural anomalies with disruptive consequences on the ability of the gamete to transmit an uncorrupted genome.


Subject(s)
Chromosomes, Mammalian/metabolism , Gene Editing , Meiosis , Microtubule-Organizing Center/metabolism , Oocytes/metabolism , Spindle Apparatus/metabolism , Animals , Chromosomes, Mammalian/genetics , Female , Mice , Mice, Transgenic , Oocytes/cytology , Spindle Apparatus/genetics
18.
J Cell Biol ; 217(7): 2485-2501, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29895697

ABSTRACT

Centrosome number is tightly controlled to ensure proper ciliogenesis, mitotic spindle assembly, and cellular homeostasis. Centrosome amplification (the formation of excess centrosomes) has been noted in renal cells of patients and animal models of various types of cystic kidney disease. Whether this defect plays a causal role in cystogenesis remains unknown. Here, we investigate the consequences of centrosome amplification during kidney development, homeostasis, and after injury. Increasing centrosome number in vivo perturbed proliferation and differentiation of renal progenitors, resulting in defective branching morphogenesis and renal hypoplasia. Centrosome amplification disrupted mitotic spindle morphology, ciliary assembly, and signaling pathways essential for the function of renal progenitors, highlighting the mechanisms underlying the developmental defects. Importantly, centrosome amplification was sufficient to induce rapid cystogenesis shortly after birth. Finally, we discovered that centrosome amplification sensitized kidneys in adult mice, causing cystogenesis after ischemic renal injury. Our study defines a new mechanism underlying the pathogenesis of renal cystogenesis, and identifies a potentially new cellular target for therapy.


Subject(s)
Cell Proliferation/genetics , Centrosome/metabolism , Kidney/growth & development , Mitosis/genetics , Animals , Cell Differentiation/genetics , Epithelial Cells/metabolism , Homeostasis/genetics , Humans , Kidney/injuries , Kidney/pathology , Mice , Morphogenesis/genetics , Spindle Apparatus/genetics
19.
J Cell Biol ; 217(4): 1169-1171, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29519803

ABSTRACT

In each duplication cycle, daughter centrioles grow to the same length as their mothers. Which mechanisms regulate this fidelity to maintain centriole length is not known. In this issue, Aydogan et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201801014) report a novel role for Polo-like kinase 4 (Plk4). They found that Plk4 functions in a homeostatic manner to balance growth rate and growth period to set the final centriole size.


Subject(s)
Centrioles , Diptera , Protein Serine-Threonine Kinases , Animals , Cell Cycle Proteins
20.
J Cell Biol ; 217(1): 11-13, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29259095

ABSTRACT

Centrosome clustering is a process frequently used by cancer cells with extra centrosomes to avoid multipolar divisions. How cell-intrinsic properties influence clustering is not entirely known. In this issue, Rhys et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201704102) report an unexpected link between clustering capacity and cortical contractility through E-cadherin and DDR1 proteins.


Subject(s)
Cadherins/metabolism , Centrosome/metabolism , Spindle Apparatus/metabolism , Discoidin Domain Receptor 1/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...