Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncologist ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944844

ABSTRACT

INTRODUCTION: Lung cancer in never-smoker (LCINS) patients accounts for 20% of lung cancer cases, and its biology remains poorly understood, particularly in genetically admixed populations. We elucidated the molecular profile of driver genes in Brazilian LCINS. METHODS: The mutational and gene fusion status of 119 lung adenocarcinomas from self-reported never-smoker patients, was assessed using targeted sequencing (NGS), nCounter, and immunohistochemistry. A panel of 46 ancestry-informative markers determined patients' genetic ancestry. RESULTS: The most frequently mutated gene was EGFR (49.6%), followed by TP53 (39.5%), ALK (12.6%), ERBB2 (7.6%), KRAS (5.9%), PIK3CA (1.7%), and less than 1% alterations in RET, NTRK1, MET∆ex14, PDGFRA, and BRAF. Except for TP53 and PIK3CA, all other alterations were mutually exclusive. Genetic ancestry analysis revealed a predominance of European (71.1%), and a higher African ancestry was associated with TP53 mutations. CONCLUSION: Brazilian LCINS exhibited a similar molecular profile to other populations, except the increased ALK and TP53 alterations. Importantly, 73% of these patients have actionable alterations that are suitable for targeted treatments.

2.
Sci Rep ; 13(1): 21168, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38036758

ABSTRACT

NTRK1, 2, and 3 fusions are important therapeutic targets for NSCLC patients, but their prevalence in South American admixed populations needs to be better explored. NTRK fusion detection in small biopsies is a challenge, and distinct methodologies are used, such as RNA-based next-generation sequencing (NGS), immunohistochemistry, and RNA-based nCounter. This study aimed to evaluate the frequency and concordance of positive samples for NTRK fusions using a custom nCounter assay in a real-world scenario of a single institution in Brazil. Out of 147 NSCLC patients, 12 (8.2%) cases depicted pan-NTRK positivity by IHC. Due to the absence of biological material, RNA-based NGS and/or nCounter could be performed in six of the 12 IHC-positive cases (50%). We found one case exhibiting an NTRK1 fusion and another an NTRK3 gene fusion by both RNA-based NGS and nCounter techniques. Both NTRK fusions were detected in patients diagnosed with lung adenocarcinoma, with no history of tobacco consumption. Moreover, no concomitant EGFR, KRAS, and ALK gene alterations were detected in NTRK-positive patients. The concordance rate between IHC and RNA-based NGS was 33.4%, and between immunohistochemistry and nCounter was 40%. Our findings indicate that NTRK fusions in Brazilian NSCLC patients are relatively rare (1.3%), and RNA-based nCounter methodology is a suitable approach for NRTK fusion identification in small biopsies.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Receptor, trkA/genetics , RNA , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...