Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 22(12): e53632, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34787357

ABSTRACT

TDP-43 is an RNA-binding protein that forms ribonucleoprotein condensates via liquid-liquid phase separation (LLPS) and regulates gene expression through specific RNA interactions. Loss of TDP-43 protein homeostasis and dysfunction are tied to neurodegenerative disorders, mainly amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Alterations of TDP-43 LLPS properties may be linked to protein aggregation. However, the mechanisms regulating TDP-43 LLPS are ill-defined, particularly how TDP-43 association with specific RNA targets regulates TDP-43 condensation remains unclear. We show that RNA binding strongly promotes TDP-43 LLPS through sequence-specific interactions. RNA-driven condensation increases with the number of adjacent TDP-43-binding sites and is also mediated by multivalent interactions involving the amino and carboxy-terminal TDP-43 domains. The physiological relevance of RNA-driven TDP-43 condensation is supported by similar observations in mammalian cellular lysate. Importantly, we find that TDP-43-RNA association maintains liquid-like properties of the condensates, which are disrupted in the presence of ALS-linked TDP-43 mutations. Altogether, RNA binding plays a central role in modulating TDP-43 condensation while maintaining protein solubility, and defects in this RNA-mediated activity may underpin TDP-43-associated pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , RNA/genetics , RNA-Binding Proteins/genetics
2.
Biochimie ; 185: 96-104, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33746066

ABSTRACT

Cancer cells exhibit an altered metabolic phenotype, consuming higher levels of the amino acid glutamine. This metabolic reprogramming depends on increased mitochondrial glutaminase activity to convert glutamine to glutamate, an essential precursor for bioenergetic and biosynthetic processes in cells. Mammals encode the kidney-type (GLS) and liver-type (GLS2) glutaminase isozymes. GLS is overexpressed in cancer and associated with enhanced malignancy. On the other hand, GLS2 is either a tumor suppressor or an oncogene, depending on the tumor type. The GLS structure and activation mechanism are well known, while the structural determinants for GLS2 activation remain elusive. Here, we describe the structure of the human glutaminase domain of GLS2, followed by the functional characterization of the residues critical for its activity. Increasing concentrations of GLS2 lead to tetramer stabilization, a process enhanced by phosphate. In GLS2, the so-called "lid loop" is in a rigid open conformation, which may be related to its higher affinity for phosphate and lower affinity for glutamine; hence, it has lower glutaminase activity than GLS. The lower affinity of GLS2 for glutamine is also related to its less electropositive catalytic site than GLS, as indicated by a Thr225Lys substitution within the catalytic site decreasing the GLS2 glutamine concentration corresponding to half-maximal velocity (K0.5). Finally, we show that the Lys253Ala substitution (corresponding to the Lys320Ala in the GLS "activation" loop, formerly known as the "gating" loop) renders a highly active protein in stable tetrameric form. We conclude that the "activation" loop, a known target for GLS inhibition, may also be a drug target for GLS2.


Subject(s)
Enzyme Activation , Glutaminase/chemistry , Liver/enzymology , Amino Acid Substitution , Catalysis , Glutaminase/genetics , Glutaminase/metabolism , Humans , Mutation, Missense , Protein Structure, Quaternary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...