Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928422

ABSTRACT

This study investigated the potential of selected compounds as inhibitors of SARS-CoV-2 Mpro through pharmacokinetic and toxicological analyses, molecular docking, and molecular dynamics simulations. In silico molecular docking simulations revealed promising ligands with favorable binding affinities for Mpro, ranging from -6.2 to -9.5 kcal/mol. Moreover, molecular dynamics simulations demonstrated the stability of protein-ligand complexes over 200 ns, maintaining protein secondary structures. MM-PBSA analysis revealed favorable interactions between ligands and Mpro, with negative binding energy values. Hydrogen bond formation capacity during molecular dynamics was confirmed, indicating consistent interactions with Mpro catalytic residues. Based on these findings, selected ligands show promise for future studies in developing COVID-19 treatments.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , SARS-CoV-2/drug effects , Humans , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Hydrogen Bonding , Ligands , COVID-19/virology , Protein Binding
2.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240165

ABSTRACT

When an epidemic started in the Chinese city of Wuhan in December 2019, coronavirus was identified as the cause. Infection by the virus occurs through the interaction of viral S protein with the hosts' angiotensin-converting enzyme 2. By leveraging resources such as the DrugBank database and bioinformatics techniques, ligands with potential activity against the SARS-CoV-2 spike protein were designed and identified in this investigation. The FTMap server and the Molegro software were used to determine the active site of the Spike-ACE2 protein's crystal structure. Virtual screening was performed using a pharmacophore model obtained from antiparasitic drugs, obtaining 2000 molecules from molport®. The ADME/Tox profiles were used to identify the most promising compounds with desirable drug characteristics. The binding affinity investigation was then conducted with selected candidates. A molecular docking study showed five structures with better binding affinity than hydroxychloroquine. Ligand_003 showed a binding affinity of -8.645 kcal·mol-1, which was considered an optimal value for the study. The values presented by ligand_033, ligand_013, ligand_044, and ligand_080 meet the profile of novel drugs. To choose compounds with favorable potential for synthesis, synthetic accessibility studies and similarity analyses were carried out. Molecular dynamics and theoretical IC50 values (ranging from 0.459 to 2.371 µM) demonstrate that these candidates are promising for further tests. Chemical descriptors showed that the candidates had strong molecule stability. Theoretical analyses here show that these molecules have potential as SARS-CoV-2 antivirals and therefore warrant further investigation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Angiotensin-Converting Enzyme 2 , Ligands , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protein Binding
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077329

ABSTRACT

Aedes aegypti mosquitoes transmit several human pathogens that cause millions of deaths worldwide, mainly in Latin America. The indiscriminate use of insecticides has resulted in the development of species resistance to some such compounds. Piperidine, a natural alkaloid isolated from Piper nigrum, has been used as a hit compound due to its larvicidal activity against Aedes aegypti. In the present study, piperidine derivatives were studied through in silico methods: pharmacophoric evaluation (PharmaGist), pharmacophoric virtual screening (Pharmit), ADME/Tox prediction (Preadmet/Derek 10.0®), docking calculations (AutoDock 4.2) and molecular dynamics (MD) simulation on GROMACS-5.1.4. MP-416 and MP-073 molecules exhibiting ΔG binding (MMPBSA -265.95 ± 1.32 kJ/mol and -124.412 ± 1.08 kJ/mol, respectively) and comparable to holo (ΔG binding = -216.21 ± 0.97) and pyriproxyfen (a well-known larvicidal, ΔG binding= -435.95 ± 2.06 kJ/mol). Considering future in vivo assays, we elaborated the theoretical synthetic route and made predictions of the synthetic accessibility (SA) (SwissADME), lipophilicity and water solubility (SwissADME) of the promising compounds identified in the present study. Our in silico results show that MP-416 and MP-073 molecules could be potent insecticides against the Aedes aegypti mosquitoes.


Subject(s)
Aedes , Insecticides , Animals , Computational Biology , Humans , Insecticides/pharmacology , Juvenile Hormones , Larva , Piperidines/pharmacology , Plant Extracts/pharmacology
4.
Front Mol Biosci ; 9: 836572, 2022.
Article in English | MEDLINE | ID: mdl-35720115

ABSTRACT

Skin Cancer (SC) is among the most common type of cancers worldwide. The search for SC therapeutics using molecular modeling strategies as well as considering natural plant-derived products seems to be a promising strategy. The phytochemical Rocaglamide A (Roc-A) and its derivatives rise as an interesting set of reference compounds due to their in vitro cytotoxic activity with SC cell lines. In view of this, we performed a hierarchical virtual screening study considering Roc-A and its derivatives, with the aim to find new chemical entities with potential activity against SC. For this, we selected 15 molecules (Roc-A and 14 derivatives) and initially used them in docking studies to predict their interactions with Checkpoint kinase 1 (Chk1) as a target for SC. This allowed us to compile and use them as a training set to build robust pharmacophore models, validated by Pearson's correlation (p) values and hierarchical cluster analysis (HCA), subsequentially submitted to prospective virtual screening using the Molport® database. Outputted compounds were then selected considering their similarities to Roc-A, followed by analyses of predicted toxicity and pharmacokinetic properties as well as of consensus molecular docking using three software. 10 promising compounds were selected and analyzed in terms of their properties and structural features and, also, considering their previous reports in literature. In this way, the 10 promising virtual hits found in this work may represent potential anti-SC agents and further investigations concerning their biological tests shall be conducted.

SELECTION OF CITATIONS
SEARCH DETAIL
...