Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(1): e0408322, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625583

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve clinical outcomes with varied efficacies in patients with CF. However, the mutual effects of CFTR modulators and bacterial adaptation, together with antibiotic regimens, can influence clinical outcomes. We evaluated the effects of ivacaftor (IVA), lumacaftor (LUM), tezacaftor, elexacaftor, and a three-modulator combination of elexacaftor, tezacaftor, and ivacaftor (ETI), alone or combined with antibiotics, on sequential CF isolates. IVA and ETI showed direct antimicrobial activities against Staphylococcus aureus but not against Pseudomonas aeruginosa. Additive effects or synergies were observed between the CFTR modulators and antibiotics against both species, independently of adaptation to the CF lung. IVA and LUM were the most effective in potentiating antibiotic activity against S. aureus, while IVA and ETI enhanced mainly polymyxin activity against P. aeruginosa. Next, we evaluated the effect of P. aeruginosa pneumonia on the pharmacokinetics of IVA in mice. IVA and its metabolites in plasma, lung, and epithelial lining fluid were increased by P. aeruginosa infection. Thus, CFTR modulators can have direct antimicrobial properties and/or enhance antibiotic activity against initial and adapted S. aureus and P. aeruginosa isolates. Furthermore, bacterial infection impacts airway exposure to IVA, potentially affecting its efficacy. Our findings suggest optimizing host- and pathogen-directed therapies to improve efficacy for personalized treatment. IMPORTANCE CFTR modulators have been developed to correct and/or enhance CFTR activity in patients with specific cystic fibrosis (CF) genotypes. However, it is of great importance to identify potential off-targets of these novel therapies to understand how they affect lung physiology in CF. Since bacterial infections are one of the hallmarks of CF lung disease, the effects (if any) of CFTR modulators on bacteria could impact their efficacy. This work highlights a mutual interaction between CFTR modulators and opportunistic bacterial infections; in particular, it shows that (i) CFTR modulators have an antibacterial activity per se and influence antibiotic efficacy, and (ii) bacterial airway infections affect levels of CFTR modulators in the airways. These findings may help optimize host- and pathogen-directed drug regimens to improve the efficacy of personalized treatment.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Animals , Mice , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation
2.
Mol Pharm ; 7(1): 207-16, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19919086

ABSTRACT

Multinuclear platinum complexes are characterized by a peculiar DNA binding mode and higher cytotoxic potency than the mononuclear complexes, and efficacy against a wide range of preclinical tumor models. To reduce the high irreversible plasma protein binding and improve the chemical and metabolic drug stability, novel bis-platinum complexes were designed starting from the parent compound CT-3610. The novel second-generation bis-platinum complexes utilize alkylcarboxylate as leaving groups to improve their pharmacokinetic and pharmacodynamic profiles, thus overcoming the limitations of the previously developed multinuclear compounds. The selected compounds [CT-47518 and CT-47463, respectively (bis-capronate) platinum and (bis-butyrate) platinum], have similar in vitro degradation kinetics in human and murine plasma and, above all, an increased stability when compared to CT-3610, particularly in human plasma. In addition, both compounds exhibited a marked cytotoxic potency as compared with cisplatin and oxaliplatin. Interestingly, they were capable of overcoming resistance mediated by DNA mismatch repair defects in different cellular models. The complexes showed marked antitumor efficacy in Pt-refractory tumor xenografts, with remarkable activity in terms of tumor growth inhibition and tumor growth delay. The improved stability profile in human plasma compared to early bis- and triplatinum complexes together with the marked activity in cellular systems as well as in in vivo models, make CT-47518 and CT-47463 attractive candidates for further development.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , DNA Adducts/metabolism , DNA Mismatch Repair , Drug Design , Drug Resistance, Neoplasm , Drug Stability , Female , Humans , Mice , Mice, Nude , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacokinetics , Oxaliplatin , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...