Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 143, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996954

ABSTRACT

Blast exposure can injure brain by multiple mechanisms, and injury attributable to direct effects of the blast wave itself have been difficult to distinguish from that caused by rapid head displacement and other secondary processes. To resolve this issue, we used a rat model of blast exposure in which head movement was either strictly prevented or permitted in the lateral plane. Blast was found to produce axonal injury even with strict prevention of head movement. This axonal injury was restricted to the cerebellum, with the exception of injury in visual tracts secondary to ocular trauma. The cerebellar axonal injury was increased in rats in which blast-induced head movement was permitted, but the pattern of injury was unchanged. These findings support the contentions that blast per se, independent of head movement, is sufficient to induce axonal injury, and that axons in cerebellar white matter are particularly vulnerable to direct blast-induced injury.


Subject(s)
Axons/pathology , Blast Injuries/pathology , Brain Injuries, Traumatic/pathology , Cerebellum/pathology , Nerve Degeneration , White Matter/pathology , Animals , Axons/metabolism , Biomarkers/metabolism , Blast Injuries/metabolism , Brain Injuries, Traumatic/metabolism , Cerebellum/injuries , Cerebellum/metabolism , Disease Models, Animal , Head Movements , Male , Optic Nerve/metabolism , Optic Nerve/pathology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Rats, Long-Evans , Visual Pathways/injuries , Visual Pathways/metabolism , Visual Pathways/pathology , White Matter/injuries , White Matter/metabolism
2.
J Neurotrauma ; 35(7): 918-929, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29285982

ABSTRACT

The inflammation response induced by brain trauma can impair recovery. This response requires several hours to develop fully and thus provides a clinically relevant therapeutic window of opportunity. Poly(ADP-ribose) polymerase inhibitors suppress inflammatory responses, including brain microglial activation. We evaluated delayed treatment with veliparib, a poly(ADP-ribose) polymerase inhibitor, currently in clinical trials as a cancer therapeutic, in rats and pigs subjected to controlled cortical impact (CCI). In rats, CCI induced a robust inflammatory response at the lesion margins, scattered cell death in the dentate gyrus, and a delayed, progressive loss of corpus callosum axons. Pre-determined measures of cognitive and motor function showed evidence of attentional deficits that resolved after three weeks and motor deficits that recovered only partially over eight weeks. Veliparib was administered beginning 2 or 24 h after CCI and continued for up to 12 days. Veliparib suppressed CCI-induced microglial activation at doses of 3 mg/kg or higher and reduced reactive astrocytosis and cell death in the dentate gyrus, but had no significant effect on delayed axonal loss or functional recovery. In pigs, CCI similarly induced a perilesional microglial activation that was attenuated by veliparib. CCI in the pig did not, however, induce detectable persisting cognitive or motor impairment. Our results showed veliparib suppression of CCI-induced microglial activation with a delay-to-treatment interval of at least 24 h in both rats and pigs, but with no associated functional improvement. The lack of improvement in long-term recovery underscores the complexities in translating anti-inflammatory effects to clinically relevant outcomes.

3.
Glia ; 64(11): 1869-78, 2016 11.
Article in English | MEDLINE | ID: mdl-27444121

ABSTRACT

Brain injury resulting from stroke or trauma can be exacerbated by the release of proinflammatory cytokines, proteases, and reactive oxygen species by activated microglia. The microglial activation resulting from brain injury is mediated in part by alarmins, which are signaling molecules released from damaged cells. The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) has been shown to regulate microglial activation after brain injury, and here we show that signaling effects of the alarmin S100B are regulated by PARP-1. S100B is a protein localized predominantly to astrocytes. Exogenous S100B added to primary microglial cultures induced a rapid change in microglial morphology, upregulation of IL-1ß, TNFα, and iNOS gene expression, and release of matrix metalloproteinase 9 and nitric oxide. Most, though not all of these effects were attenuated in PARP-1(-/-) microglia and in wild-type microglia treated with the PARP inhibitor, veliparib. Microglial activation and gene expression changes induced by S100B injected directly into brain were likewise attenuated by PARP-1 inhibition. The anti-inflammatory effects of PARP-1 inhibitors in acutely injured brain may thus be mediated in part through effects on S100B signaling pathways. GLIA 2016;64:1869-1878.


Subject(s)
Alarmins/metabolism , Gene Expression Regulation/drug effects , Microglia/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , S100 Calcium Binding Protein beta Subunit/pharmacology , Animals , Animals, Newborn , Astrocytes/drug effects , Benzimidazoles/pharmacology , Brain/cytology , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phenanthrenes/pharmacology , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Polysaccharides/toxicity , S100 Calcium Binding Protein beta Subunit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...