Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 43(8): 193, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008125

ABSTRACT

Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.


Subject(s)
Homeostasis , Reactive Nitrogen Species , Reactive Oxygen Species , Salt Tolerance , Reactive Oxygen Species/metabolism , Reactive Nitrogen Species/metabolism , Salt Tolerance/genetics , Gene Expression Regulation, Plant , Oxidative Stress , Antioxidants/metabolism , Oxidation-Reduction , Plants/metabolism , Salinity
2.
Plant Physiol Biochem ; 211: 108682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714133

ABSTRACT

Constant change in global climate has become the most important limiting factor to crop productivity. Asymmetrical precipitations are causing recurrent flood events around the world. Submergence is one of the most detrimental abiotic stresses for sustainable rice production in the rainfed ecosystems of Southeast Asia. Therefore, the development of submergence-tolerant rice is an essential requirement to encounter food security. Submergence tolerance in rice is governed by the major quantitative trait locus (QTL) designated as Submergence1 (Sub1) near the centromere of chromosome 9. The introduction of the Sub1 in high-yielding rice varieties producing near-isogenic lines (NILs) has shown extreme submergence tolerance. The present study aimed to understand the responses of rice genotype IR64 and its Sub1 NIL IR64 Sub1 following one week of complete submergence treatment. Submergence imposed severe nitro-oxidative stress in both the rice genotypes, consequently disrupting the cellular redox homeostasis. In this study, IR64 exhibited higher NADPH oxidase activity accompanied by increased reactive oxygen species, reactive nitrogen species, and malondialdehyde buildups and cell death under submergence. Higher accumulations of 1-Aminocyclopropane-1-carboxylic acid, gibberellic acid, and Indole-3-acetic acid were also observed in IR64 which accelerated the plant growth and root cortical aerenchyma development following submergence. In contrast, IR64 Sub1 had enhanced submergence tolerance associated with an improved antioxidant defense system with sustainable morpho-physiological activities and restricted root aerenchyma formation. The comprehensive analyses of the responses of rice genotypes with contrasting submergence tolerance may demonstrate the intricacies of rice under complete submergence and may potentially contribute to improving stress resilience by advancing our understanding of the mechanisms of submergence tolerance in rice.


Subject(s)
Oryza , Plant Growth Regulators , Quantitative Trait Loci , Oryza/genetics , Oryza/metabolism , Oryza/physiology , Quantitative Trait Loci/genetics , Plant Growth Regulators/metabolism , Oxidative Stress/genetics , Signal Transduction , Reactive Oxygen Species/metabolism , Adaptation, Physiological/genetics , Floods , Gene Expression Regulation, Plant , Genotype
3.
Physiol Plant ; 175(6): e14076, 2023.
Article in English | MEDLINE | ID: mdl-38148224

ABSTRACT

Soil salinity leading to sodium toxicity is developing into a massive challenge for agricultural productivity globally, inducing osmotic, ionic, and redox imbalances in plants. Considering the predicted increase in salinization risk with the ongoing climate change, applying plant growth-promoting rhizobacteria (PGPR) is an environmentally safe method for augmenting plant salinity tolerance. The present study examined the role of halotolerant Bacillus sp. BSE01 as a promising biostimulant for improving salt stress endurance in chickpea. Application of PGPR significantly increased the plant height, relative water content, and chlorophyll content of chickpea under both non-stressed and salt stress conditions. The PGPR-mediated tolerance towards salt stress was accomplished by the modulation of hormonal signaling and conservation of cellular ionic, osmotic, redox homeostasis. With salinity stress, the PGPR-treated plants significantly increased the indole-3-acetic acid and gibberellic acid contents more than the non-treated plants. Furthermore, the PGPR-inoculated plants maintained lower 1-aminocyclopropane-1-carboxylic acid and abscisic acid contents under salt treatment. The PGPR-inoculated chickpea plants also exhibited a decreased NADPH oxidase activity with reduced production of reactive oxygen species compared to the non-inoculated plants. Additionally, PGPR treatment led to increased antioxidant enzyme activities in chickpea under saline conditions, facilitating the reactive nitrogen and oxygen species detoxification, thereby limiting the nitro-oxidative damage. Following salinity stress, enhanced K+ /Na+ ratio and proline content were noted in the PGPR-inoculated chickpea plants. Therefore, Bacillus sp. BSE01, being an effective PGPR and salinity stress reducer, can further be considered to develop a bioinoculant for sustainable chickpea production under saline environments.


Subject(s)
Bacillus , Cicer , Cicer/metabolism , Plant Development , Antioxidants/metabolism , Oxidation-Reduction
4.
Physiol Plant ; 174(1): e13638, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35092312

ABSTRACT

Abiotic stresses are emerging as a potential threat to sustainable agriculture worldwide. Soil salinity and drought will be the major limiting factors for rice productivity in years to come. The Salt Overly Sensitive (SOS) pathway plays a key role in salinity tolerance by maintaining the cellular ion homeostasis, with SOS2, a S/T kinase, being a vital component. The present study investigated the role of the OsSOS2, a SOS2 homolog from rice, in improving salinity and drought tolerance. Transgenic plants with either overexpression (OE) or knockdown (KD) of OsSOS2 were raised in one of the high-yielding cultivars of rice-IR64. Using a combined approach based on physiological, biochemical, anatomical, microscopic, molecular, and agronomic assessment, the evidence presented in this study advocates the role of OsSOS2 in improving salinity and drought tolerance in rice. The OE plants were found to have favorable ion and redox homeostasis when grown in the presence of salinity, while the KD plants showed the reverse pattern. Several key stress-responsive genes were found to work in an orchestrated manner to contribute to this phenotype. Notably, the OE plants showed tolerance to stress at both the seedling and the reproductive stages, addressing the two most sensitive stages of the plant. Keeping in mind the importance of developing crops plants with tolerance to multiple stresses, the present study established the potential of OsSOS2 for biotechnological applications to improve salinity and drought stress tolerance in diverse cultivars of rice.


Subject(s)
Oryza , Droughts , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salinity , Salt Tolerance/genetics , Stress, Physiological/genetics
5.
Plant Physiol Biochem ; 166: 393-404, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153883

ABSTRACT

Silicon (Si), a bioactive metalloid is beneficial for plant growth and development. It also plays a key role in the amelioration of different abiotic and biotic stresses. Extensive studies have elucidated the morpho-physiological, biochemical and molecular background of Si-mediated stress tolerance in plants. However, the mechanism acquired by Si to enhance stress tolerance in plants is still unheeded. Present review summarized the prospective mechanisms of Si in acquisition of stress tolerance with emphasis on its interactions with secondary messengers. Silicon usually modulates the different gene expressions in plants under stress conditions rather than acting as a direct signal or secondary messengers. Silicon regulates the production and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants under stress conditions. Furthermore, Si also activates the antioxidant defence system in plants; thereby, maintaining the cellular redox homeostasis and preventing the oxidative damage of cells. Silicon also up-regulates the synthesis of hydrogen sulfide (H2S) or acts synergistically with nitric oxide (NO), consequently conferring stress tolerance in plants. Overall, the review may provide a progressive understanding of the role of Si in conservation of the redox homeostasis in plants.


Subject(s)
Plants , Silicon , Homeostasis , Plant Development , Silicon/pharmacology , Stress, Physiological
6.
Physiol Plant ; 172(2): 963-975, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33826753

ABSTRACT

Drought stress induces the formation of cortical aerenchyma in roots, providing drought tolerance by reducing respiration. However, unrestricted aerenchyma formation impedes the radial transport of water through the root's central cylinder; thereby decreasing the water uptake under drought stress. Therefore, exploring the root architectural and anatomical alterations in rice under drought is essential for targeting crop improvement. Drought stress-induced accumulation of reactive oxygen species (ROS) plays a key role in the lysigenous aerenchyma development. However, the influence of nitric oxide (NO) and reactive nitrogen species (RNS) in the development of lysigenous aerenchyma under drought has never been studied in rice. The present study examined the effect of ROS and RNS, generated by progressive drought stress, on the lysigenous aerenchyma formation in the roots of contrasting rice genotypes of the Eastern Indo-Gangetic plains (EIGP). As expected, the PEG-induced drought stress stimulated the expression of NADPH oxidase (NOX), thereby promoting the ROS generation in roots of the rice seedlings. Excessive ROS and RNS accumulations in roots affected the membrane lipids, promoting the tissue-specific programmed cell death (PCD) in rice. The activation of the antioxidant defense system played a major role in the ROS and RNS detoxification, thereby restricting the root aerenchyma formation in rice under drought stress. The results also displayed that drought tolerance in rice is associated with the formation of the Casparian strip, which limits the apoplastic flow of water in the water-deficient roots. Overall, our study revealed the association of nitro-oxidative metabolism with PCD and lysigenous aerenchyma formation in the cortical cells of root under drought stress in rice.


Subject(s)
Oryza , Oryza/genetics , Osmotic Pressure , Oxidative Stress , Plant Roots , Seedlings
7.
Physiol Plant ; 172(3): 1764-1778, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33751571

ABSTRACT

Climate change negatively impacts the global hydrological resources leading to detrimental flood events. Submergence impedes the cellular membrane integrity, consequently affecting the membrane fluidity. Different abiotic stresses influence membrane lipid composition. Therefore, the remodeling of membrane lipids plays a major role in stress adaptation. Submergence-induced membrane lipid peroxidation is well established in plants. However, dynamic changes in lipid composition for regulating submergence tolerance in rice remain so far unexplored. The present study explored the effect of submergence on the lipidomic profile of the Sub1 near-isogenic lines (NILs) of rice, viz. Swarna, and Swarna Sub1 with contrasting submergence tolerance. The study also examined the association of lipidomic alteration with the membrane integrity and submergence tolerance. Submergence caused increased accumulation of reactive oxygen species (ROS), which was significantly higher in Swarna than Swarna Sub1. The lipid profile was also considerably altered under submergence. Following submergence, Swarna exhibited a significant decrease in phospholipid content accompanied by increased lipid peroxidation and electrolyte leakage. Furthermore, the disintegration of the thylakoid membrane resulted in a significant decrease in the chlorophyll content and photosynthesis rate under submergence. Submergence-induced hypoxic condition also promoted starch depletion to fulfill the energy requirement. In contrast, submergence acclimation in Swarna Sub1 was associated with the shift to anaerobic respiration mediated by increased alcohol dehydrogenase (ADH) activity. Effective ROS detoxification in Swarna Sub1 facilitated by increased antioxidant enzyme activities contributed to the submergence tolerance by maintaining membrane integrity and photosynthetic activity. The present study established the direct association of lipid remodeling with membrane integrity, cell viability, and photosynthesis and also devised a crop model to reveal the molecular background of submergence tolerance in plants.


Subject(s)
Oryza , Apoptosis , Chlorophyll , Oxidation-Reduction , Photosynthesis
8.
Physiol Plant ; 171(4): 502-519, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32320060

ABSTRACT

Soil salinity is a constraint for major agricultural crops leading to severe yield loss, which may increase with the changing climatic conditions. Disruption in the cellular ionic homeostasis is one of the primary responses induced by elevated sodium ions (Na+ ). Therefore, unraveling the mechanism of Na+ uptake and transport in plants along with the characterization of the candidate genes facilitating ion homeostasis is obligatory for enhancing salinity tolerance in crops. This review summarizes the current advances in understanding the ion homeostasis mechanism in crop plants, emphasizing the role of transporters involved in the regulation of cytosolic Na+ level along with the conservation of K+ /Na+ ratio. Furthermore, expression profiles of the candidate genes for ion homeostasis were also explored under various developmental stages and tissues of Oryza sativa based on the publicly available microarray data. The review also gives an up-to-date summary on the efforts to increase salinity tolerance in crops by manipulating selected stress-associated genes. Overall, this review gives a combined view on both the ionomic and molecular background of salt stress tolerance in plants.


Subject(s)
Oryza , Salt Tolerance , Gene Expression Regulation, Plant , Homeostasis , Oryza/genetics , Salinity
9.
Funct Plant Biol ; 46(12): 1090-1102, 2019 11.
Article in English | MEDLINE | ID: mdl-31665615

ABSTRACT

Climatic variations along with a rise in temperature during the winter season impose severe heat stress during the anthesis stage of spring wheat, resulting in severe yield losses. The present study was conducted to evaluate the influence of heat stress on redox homeostasis in developing anthers and flag leaves of wheat. Five Indian bread wheat genotypes were studied under field conditions during the dry season, with two extreme sowing dates (timely and very late sown) to explore the effect of heat stress on anthesis stage. Results showed that elevated temperature during anthesis caused significant increase in reactive oxygen species (ROS) content and malondialdehyde (MDA) accumulation in developing anthers, triggering pollen mortality. Moreover, defective source (leaf) to the sink (anthers) mobilisation of starch also contributes in reducing pollen viability. However, ROS-induced oxidative damage of developing anthers under heat stress varied among the wheat genotypes depending upon differential antioxidant enzyme activities. Wheat genotype with enhanced antioxidant activities and reduced ROS built up in developing anthers sustained their grain yield, suggesting thermo-tolerance in wheat to be associated with antioxidant enzyme-mediated improved ROS-scavenging mechanism not only in leaves even in developing anther also. In the present study, heat stressed wheat genotype WH 730 exhibited effective source to sink mobilisation and sustainable grain yield with improved ROS scavenging, conferring greater potential for heat tolerance. We conclude that redox homeostasis and balanced source sink activity played a significant role for sustainable yield and heat tolerance in wheat.


Subject(s)
Antioxidants , Triticum , Edible Grain , Heat-Shock Response , Plant Leaves
10.
Physiol Mol Biol Plants ; 23(4): 837-850, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29158633

ABSTRACT

Rice being a staple cereal is extremely susceptible towards abiotic stresses. Drought and salinity are two vital factors limiting rice cultivation in Eastern Indo-Gangetic Plains (EIGP). Present study has intended to evaluate the consequences of salinity stress on selected drought tolerant rice genotypes at the most susceptible seedling stage with an aim to identify the potential multi-stress (drought and salt) tolerant rice genotype of this region. Genotypic variation was obvious in all traits related to drought and salt susceptibility. IR84895-B-127-CRA-5-1-1, one of the rice genotypes studied, exhibited exceptional drought and salinity tolerance. IR83373-B-B-25-3-B-B-25-3 also displayed enhanced drought and salt tolerance following IR84895-B-127-CRA-5-1-1. Variations were perceptible in different factors involving photosynthetic performance, proline content, lipid peroxidation, K+/Na+ ratio. Accumulation of reactive oxygen species (ROS) disintegrated cellular and sub-cellular membrane leading to decreased photosynthetic activities. Therefore, accumulation and detoxification of reactive oxygen species was also considered as a major determinant of salt tolerance. IR84895-B-127-CRA-5-1-1 showed improved ROS detoxification mediated by antioxidant enzymes. IR84895-B-127-CRA-5-1-1 seedlings also displayed significant recovery after removal of salt stress. The results established a direct association of ROS scavenging with improved physiological activities and salt tolerance. The study also recommended IR84895-B-127-CRA-5-1-1 for improved crop performance in both drought and saline environments of EIGP. These contrasting rice genotypes may assist in understanding the multiple stress associated factors in concurrent drought and salt tolerant rice genotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...