Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Comput Biol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885081

ABSTRACT

The combined effect of shape and electrostatic complementarities (Sc, EC) at the interface of the interacting protein partners (PPI) serves as the physical basis for such associations and is a strong determinant of their binding energetics. EnCPdock (https://www.scinetmol.in/EnCPdock/) presents a comprehensive web platform for the direct conjoint comparative analyses of complementarity and binding energetics in PPIs. It elegantly interlinks the dual nature of local (Sc) and nonlocal complementarity (EC) in PPIs using the complementarity plot. It further derives an AI-based ΔGbinding with a prediction accuracy comparable to the state of the art. This book chapter presents a practical manual to conceptualize and implement EnCPdock with its various features and functionalities, collectively having the potential to serve as a valuable protein engineering tool in the design of novel protein interfaces.

2.
Sci Rep ; 14(1): 4096, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374240

ABSTRACT

Corneal HSV-1 infections are a leading cause of infectious blindness globally by triggering tissue damage due to the intense inflammation. HSV-1 infections are treated mainly with antiviral drugs that clear the infections but are inefficient as prophylactics. The body produces innate cationic host defence peptides (cHDP), such as the cathelicidin LL37. Various epithelia, including the corneal epithelium, express LL37. cHDPs can cause disintegration of pathogen membranes, stimulate chemokine production, and attract immune cells. Here, we selected GF17, a peptide containing the LL37 fragment with bioactivity but with minimal cytotoxicity, and added two cell-penetrating amino acids to enhance its activity. The resulting GF19 was relatively cell-friendly, inducing only partial activation of antigen presenting immune cells in vitro. We showed that HSV-1 spreads by tunneling nanotubes in cultured human corneal epithelial cells. GF19 given before infection was able to block infection, most likely by blocking viral entry. When cells were sequentially  exposed to viruses and GF19,  the infection was attenuated but not arrested, supporting the contention that the GF19 mode of action was to block viral entry. Encapsulation into silica nanoparticles allowed a more sustained release of GF19, enhancing its activity. GF19 is most likely suitable as a prevention rather than a virucidal treatment.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Antimicrobial Cationic Peptides/therapeutic use , Serogroup , Cornea , Herpesvirus 1, Human/physiology
3.
J Mol Model ; 29(8): 239, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37423912

ABSTRACT

CONTEXT: Protein-protein interaction (PPI) is a key component linked to virtually all cellular processes. Be it an enzyme catalysis ('classic type functions' of proteins) or a signal transduction ('non-classic'), proteins generally function involving stable or quasi-stable multi-protein associations. The physical basis for such associations is inherent in the combined effect of shape and electrostatic complementarities (Sc, EC) of the interacting protein partners at their interface, which provides indirect probabilistic estimates of the stability and affinity of the interaction. While Sc is a necessary criterion for inter-protein associations, EC can be favorable as well as disfavored (e.g., in transient interactions). Estimating equilibrium thermodynamic parameters (∆Gbinding, Kd) by experimental means is costly and time consuming, thereby opening windows for computational structural interventions. Attempts to empirically probe ∆Gbinding from coarse-grain structural descriptors (primarily, surface area based terms) have lately been overtaken by physics-based, knowledge-based and their hybrid approaches (MM/PBSA, FoldX, etc.) that directly compute ∆Gbinding without involving intermediate structural descriptors. METHODS: Here, we present EnCPdock ( https://www.scinetmol.in/EnCPdock/ ), a user-friendly web-interface for the direct conjoint comparative analyses of complementarity and binding energetics in proteins. EnCPdock returns an AI-predicted ∆Gbinding computed by combining complementarity (Sc, EC) and other high-level structural descriptors (input feature vectors), and renders a prediction accuracy comparable to the state-of-the-art. EnCPdock further locates a PPI complex in terms of its {Sc, EC} values (taken as an ordered pair) in the two-dimensional complementarity plot (CP). In addition, it also generates mobile molecular graphics of the interfacial atomic contact network for further analyses. EnCPdock also furnishes individual feature trends along with the relative probability estimates (Prfmax) of the obtained feature-scores with respect to the events of their highest observed frequencies. Together, these functionalities are of real practical use for structural tinkering and intervention as might be relevant in the design of targeted protein-interfaces. Combining all its features and applications, EnCPdock presents a unique online tool that should be beneficial to structural biologists and researchers across related fraternities.


Subject(s)
Proteins , Models, Molecular , Proteins/chemistry , Protein Binding
4.
Pharmaceutics ; 15(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37376106

ABSTRACT

Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period.

6.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214759

ABSTRACT

The COVID-19 origin debate has greatly been influenced by genome comparison studies of late, revealing the emergence of the Furin-like cleavage site at the S1/S2 junction of the SARS-CoV-2 Spike (FLCSSpike) containing its 681PRRAR685 motif, absent in other related respiratory viruses. Being the rate-limiting (i.e., the slowest) step, the host Furin cleavage is instrumental in the abrupt increase in transmissibility in COVID-19, compared to earlier onsets of respiratory viral diseases. In such a context, the current paper entraps a 'disorder-to-order transition' of the FLCSSpike (concomitant to an entropy arrest) upon binding to Furin. The interaction clearly seems to be optimized for a more efficient proteolytic cleavage in SARS-CoV-2. The study further shows the formation of dynamically interchangeable and persistent networks of salt-bridges at the Spike-Furin interface in SARS-CoV-2 involving the three arginines (R682, R683, R685) of the FLCSSpike with several anionic residues (E230, E236, D259, D264, D306) coming from Furin, strategically distributed around its catalytic triad. Multiplicity and structural degeneracy of plausible salt-bridge network archetypes seem to be the other key characteristic features of the Spike-Furin binding in SARS-CoV-2, allowing the system to breathe-a trademark of protein disorder transitions. Interestingly, with respect to the homologous interaction in SARS-CoV (2002/2003) taken as a baseline, the Spike-Furin binding events, generally, in the coronavirus lineage, seems to have preference for ionic bond formation, even with a lesser number of cationic residues at their potentially polybasic FLCSSpike patches. The interaction energies are suggestive of characteristic metastabilities attributed to Spike-Furin interactions, generally to the coronavirus lineage, which appears to be favorable for proteolytic cleavages targeted at flexible protein loops. The current findings not only offer novel mechanistic insights into the coronavirus molecular pathology and evolution, but also add substantially to the existing theories of proteolytic cleavages.

7.
Proteins ; 90(7): 1390-1412, 2022 07.
Article in English | MEDLINE | ID: mdl-35157344

ABSTRACT

According to the "jigsaw puzzle" model of protein folding, the isomorphism between sequence and structure is substantially determined by the specific geometry of side-chain interactions, within the protein interior. In this work, we have attempted to predict the hydrophobic core of cyclophilin (LdCyp) from Leishmania donovani, utilizing a surface complementarity function, which selects for high goodness of fit between hydrophobic side-chain surfaces, rather in the manner of assembling a three-dimensional jigsaw puzzle. The computational core prediction method implemented here has been tried on two distinct scenarios, on the LdCyp polypeptide chain with native non-core residues and all core residues initially set to alanine, on a poly-glycine polypeptide chain. Molecular dynamics simulations appeared to indicate partial destabilization of the two designed sequences. However, experimental characterization of the designed sequences by circular dichroism (CD) spectroscopy and denaturant (GdmCl) induced unfolding, demonstrated disordered proteins. Stepwise reconstruction of the designed cores by cumulative sequential mutations identified the specific mutation (M122L) as primarily responsible for fold collapse and all design objectives were achieved upon rectifying this mutation. In summary, the study demonstrates regions of the core to contain highly specific (jigsaw puzzle-like) interactions sensitive to any perturbations and a predictive algorithm to identify such regions. A mutation within the core has been identified which exercises an inordinate influence on the global fold, reminiscent of metamorphic proteins. In addition, the computational procedure could predict substantial regions of the core (given main-chain coordinates) without any reference to non-core residues.


Subject(s)
Protein Folding , Proteins , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Peptides
8.
Vaccines (Basel) ; 9(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34696191

ABSTRACT

As is well known, the emergence of SARS-CoV-2 ever since late 2019 [...].

9.
J Mol Model ; 27(6): 191, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34057647

ABSTRACT

COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike-ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently "reaction-prone." The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic "hydrophobic ↔ polar" mutations serve as a potential breakthrough.


Subject(s)
SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites/physiology , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Humans , Lung/metabolism , Lung/virology , Protein Binding/physiology , Virus Internalization
10.
Front Bioinform ; 1: 742843, 2021.
Article in English | MEDLINE | ID: mdl-36303753

ABSTRACT

Understanding the role of stability strengths and weaknesses in proteins is a key objective for rationalizing their dynamical and functional properties such as conformational changes, catalytic activity, and protein-protein and protein-ligand interactions. We present BRANEart, a new, fast and accurate method to evaluate the per-residue contributions to the overall stability of membrane proteins. It is based on an extended set of recently introduced statistical potentials derived from membrane protein structures, which better describe the stability properties of this class of proteins than standard potentials derived from globular proteins. We defined a per-residue membrane propensity index from combinations of these potentials, which can be used to identify residues which strongly contribute to the stability of the transmembrane region or which would, on the contrary, be more stable in extramembrane regions, or vice versa. Large-scale application to membrane and globular proteins sets and application to tests cases show excellent agreement with experimental data. BRANEart thus appears as a useful instrument to analyze in detail the overall stability properties of a target membrane protein, to position it relative to the lipid bilayer, and to rationally modify its biophysical characteristics and function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/BRANEart.

11.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140474, 2020 10.
Article in English | MEDLINE | ID: mdl-32579908

ABSTRACT

Intrinsically disordered proteins (IDP) serve as one of the key components in the global proteome. In contrast to globular proteins, they harbor an enormous amount of physical flexibility enforcing them to be retained in conformational ensembles rather than stable folds. Previous studies in an aligned direction have revealed the importance of transient dynamical phenomena like that of salt-bridge formation in IDPs to support their physical flexibility and have further highlighted their functional relevance. For this characteristic flexibility, IDPs remain amenable and accessible to different ordered binding partners, supporting their potential multi-functionality. The current study further addresses this complex structure-functional interplay in IDPs using phase transition dynamics to conceptualize the underlying (avalanche type) mechanism of their being distributed across and hopping around degenerate structural states (conformational ensembles). For this purpose, extensive molecular dynamics simulations have been done and the data analyzed from a statistical physics perspective. Investigation of the plausible scope of 'self-organized criticality' (SOC) to fit into the complex dynamics of IDPs was found to be assertive, relating the conformational degeneracy of these proteins to their functional multiplicity. In accordance with the transient nature of 'salt-bridge dynamics', the study further uses it as a probe to explain the structural basis of the proposed criticality in the conformational phase transition among self-similar groups in IDPs. The analysis reveal scale-invariant self-similar fractal geometries in the structural conformations of different IDPs. The insights from the study has the potential to be extended further to benefit structural tinkering of IDPs in their functional characterization and drugging.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Phase Transition , Protein Conformation , Algorithms , Models, Theoretical , Salts/chemistry
12.
Sci Rep ; 9(1): 12043, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427701

ABSTRACT

Transmembrane proteins play a fundamental role in a wide series of biological processes but, despite their importance, they are less studied than globular proteins, essentially because their embedding in lipid membranes hampers their experimental characterization. In this paper, we improved our understanding of their structural stability through the development of new knowledge-based energy functions describing amino acid pair interactions that prevail in the transmembrane and extramembrane regions of membrane proteins. The comparison of these potentials and those derived from globular proteins yields an objective view of the relative strength of amino acid interactions in the different protein environments, and their role in protein stabilization. Separate potentials were also derived from α-helical and ß-barrel transmembrane regions to investigate possible dissimilarities. We found that, in extramembrane regions, hydrophobic residues are less frequent but interactions between aromatic and aliphatic amino acids as well as aromatic-sulfur interactions contribute more to stability. In transmembrane regions, polar residues are less abundant but interactions between residues of equal or opposite charges or non-charged polar residues as well as anion-π interactions appear stronger. This shows indirectly the preference of the water and lipid molecules to interact with polar and hydrophobic residues, respectively. We applied these new energy functions to predict whether a residue is located in the trans- or extramembrane region, and obtained an AUC score of 83% in cross validation, which demonstrates their accuracy. As their application is, moreover, extremely fast, they are optimal instruments for membrane protein design and large-scale investigations of membrane protein stability.


Subject(s)
Amino Acids/chemistry , Computational Biology , Membrane Proteins/chemistry , Models, Molecular , Algorithms , Computational Biology/methods , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Salts/chemistry , Static Electricity , Structure-Activity Relationship
13.
J Comput Chem ; 40(28): 2502-2508, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31237360

ABSTRACT

Electrostatic potential, energies, and forces affect virtually any process in molecular biology, however, computing these quantities is a difficult task due to irregularly shaped macromolecules and the presence of water. Here, we report a new edition of the popular software package DelPhi along with describing its functionalities. The new DelPhi is a C++ object-oriented package supporting various levels of multiprocessing and memory distribution. It is demonstrated that multiprocessing results in significant improvement of computational time. Furthermore, for computations requiring large grid size (large macromolecular assemblages), the approach of memory distribution is shown to reduce the requirement of RAM and thus permitting large-scale modeling to be done on Linux clusters with moderate architecture. The new release comes with new features, whose functionalities and applications are described as well. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.


Subject(s)
Software , Static Electricity
14.
Int J Mol Sci ; 20(3)2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30696058

ABSTRACT

Structural information of biological macromolecules is crucial and necessary to deliver predictions about the effects of mutations-whether polymorphic or deleterious (i.e., disease causing), wherein, thermodynamic parameters, namely, folding and binding free energies potentially serve as effective biomarkers. It may be emphasized that the effect of a mutation depends on various factors, including the type of protein (globular, membrane or intrinsically disordered protein) and the structural context in which it occurs. Such information may positively aid drug-design. Furthermore, due to the intrinsic plasticity of proteins, even mutations involving radical change of the structural and physico⁻chemical properties of the amino acids (native vs. mutant) can still have minimal effects on protein thermodynamics. However, if a mutation causes significant perturbation by either folding or binding free energies, it is quite likely to be deleterious. Mitigating such effects is a promising alternative to the traditional approaches of designing inhibitors. This can be done by structure-based in silico screening of small molecules for which binding to the dysfunctional protein restores its wild type thermodynamics. In this review we emphasize the effects of mutations on two important biophysical properties, stability and binding affinity, and how structures can be used for structure-based drug design to mitigate the effects of disease-causing variants on the above biophysical properties.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Proteins/chemistry , Proteins/genetics , Drug Design , Humans , Protein Binding , Protein Stability , Thermodynamics
15.
Proteins ; 86(12): 1277-1283, 2018 12.
Article in English | MEDLINE | ID: mdl-30252159

ABSTRACT

DelPhiPKa is a widely used and unique approach to compute pKa 's of ionizable groups that does not require molecular surface to be defined. Instead, it uses smooth Gaussian-based dielectric function to treat computational space via Poisson-Boltzmann equation (PBE). Here, we report an expansion of DelPhiPKa functionality to enable inclusion of salt in the modeling protocol. The method considers the salt mobile ions in solvent phase without defining solute-solvent boundary. Instead, the ions are penalized to enter solute interior via a desolvation penalty term in the Boltzmann factor in the framework of PBE. Hence, the concentration of ions near the protein is balanced by the desolvation penalty and electrostatic interactions. The study reveals that correlation between experimental and calculated pKa 's is improved significantly by taking into consideration the presence of salt. Furthermore, it is demonstrated that DelphiPKa reproduces the salt sensitivity of experimentally measured pKa 's. Another new development of DelPhiPKa allows for computing the pKa 's of polar residues such as cysteine, serine, threonine and tyrosine. With this regard, DelPhiPKa is benchmarked against experimentally measured cysteine and tyrosine pKa 's and for cysteine it is shown to outperform other existing methods (DelPhiPKa RMSD of 1.73 vs RMSD between 2.40 and 4.72 obtained by other existing pKa prediction methods).


Subject(s)
Models, Chemical , Proteins/chemistry , Salts/chemistry , Databases, Protein , Hydrogen-Ion Concentration , Protein Conformation , Solvents/chemistry , Static Electricity , Thermodynamics
16.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 624-641, 2018.
Article in English | MEDLINE | ID: mdl-29548979

ABSTRACT

Intrinsically Disordered Proteins (IDPs) are enriched in charged and polar residues; and, therefore, electrostatic interactions play a predominant role in their dynamics. In order to remain multi-functional and exhibit their characteristic binding promiscuity, they need to retain considerable dynamic flexibility. At the same time, they also need to accommodate a large number of oppositely charged residues, which eventually lead to the formation of salt-bridges, imparting local rigidity. The formation of salt-bridges therefore opposes the desired dynamic flexibility. Hence, there appears to be a meticulous trade-off between the two mechanisms which the current study attempts to unravel. With this objective, we identify and analyze salt-bridges, both as isolated as well as composite ionic bond motifs, in the molecular dynamic trajectories of a set of appropriately chosen IDPs. Time evolved structural properties of these salt-bridges like persistence, associated secondary structural 'order-disorder' transitions, correlated atomic movements, contribution in the overall electrostatic balance of the proteins have been studied in necessary detail. The results suggest that the key to maintain such a trade-off over time is the continuous formation and dissolution of salt-bridges with a wide range of persistence. Also, the continuous dynamic interchange of charged-atom-pairs (coming from a variety of oppositely charged side-chains) in the transient ionic bonds supports a model of dynamic flexibility concomitant with the well characterized stochastic conformational switching in these proteins. The results and conclusions should facilitate the future design of salt-bridges as a mean to further explore the disordered-globular interface in proteins.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Static Electricity , Amino Acid Motifs , Amyloid beta-Peptides/chemistry , Bacteriophage phi X 174 , Factor Xa/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Pliability , Protein Conformation , Protein Stability , Solvents/chemistry , Structure-Activity Relationship , Viral Proteins/chemistry , alpha-Synuclein/chemistry
17.
Research (Wash D C) ; 2018: 9712832, 2018.
Article in English | MEDLINE | ID: mdl-31549040

ABSTRACT

Nanoparticle bioreactivity critically depends upon interaction between proteins and nanomaterials (NM). The formation of the "protein corona" (PC) is the effect of such nanoprotein interactions. PC has a wide usage in pharmaceuticals, drug delivery, medicine, and industrial biotechnology. Therefore, a detailed in-vitro, in-vivo, and in-silico understanding of nanoprotein interaction is fundamental and has a genuine contemporary appeal. NM surfaces can modify the protein conformation during interaction, or NMs themselves can lead to self-aggregations. Both phenomena can change the whole downstream bioreactivity of the concerned nanosystem. The main aim of this review is to understand the mechanistic view of NM-protein interaction and recapitulate the underlying physical chemistry behind the formation of such complicated macromolecular assemblies, to provide a critical overview of the different models describing NM induced structural and functional modification of proteins. The review also attempts to point out the current limitation in understanding the field and highlights the future scopes, involving a plausible proposition of how artificial intelligence could be aided to explore such systems for the prediction and directed design of the desired NM-protein interactions.

18.
J Mol Model ; 24(1): 8, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29218430

ABSTRACT

The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (Sm, Em) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant Em values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CPdock, based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CPdock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CPdock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing the efficacy of CPdock to be used in the initial screening phase of a protein-protein docking scoring pipeline.


Subject(s)
Computational Biology/methods , Molecular Docking Simulation , Proteins/metabolism , Software , Protein Conformation , Protein Folding , Proteins/chemistry , Static Electricity
19.
Anal Chim Acta ; 985: 101-113, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28864180

ABSTRACT

Nitric oxide (NO) acts as a signalling molecule that has direct and indirect regulatory roles in various functional processes in biology, though in plant kingdom its role is relatively unexplored. One reason for this is the fact that sensing of NO is always challenging. There are very few probes that can classify the different NO species. The present paper proposes a simple but straightforward way for sensing different NO species using chlorophyll, the source of inspiration being hemoglobin that serves as NO sink in mammalian systems. The proposed method is able to classify NO from DETA-NONOate or (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1,2-diolate, nitrite, nitrate and S-nitrosothiol or SNO. This discrimination is carried out by chlorophyll a (chl a) at nano molar (nM) order of sensitivity and at 293 K-310 K. Molecular docking reveals the differential binding effects of NO and SNO with chlorophyll, the predicted binding affinity matching with the experimental observation. Additional experiments with a diverse range of cyanobacteria reveal that apart from the spectroscopic approach the proposed sensing module can be used in microscopic inspection of NO species. Binding of NO is sensitive to temperature and static magnetic field. This provides additional support for the involvement of the porphyrin ring structures to the NO sensing process. This also, broadens the scope of the sensing methods as hinted in the text.


Subject(s)
Chlorophyll/chemistry , Cyanobacteria/chemistry , Nitric Oxide Donors/analysis , Nitric Oxide/analysis , Anabaena/chemistry , Chlorophyll A , Molecular Docking Simulation
20.
J Mol Model ; 23(7): 206, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28626846

ABSTRACT

There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.

SELECTION OF CITATIONS
SEARCH DETAIL
...