Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 215: 313-326, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30851689

ABSTRACT

CQDs have emerged with outstanding properties as a star member of carbon nanomaterial family and in order to reveal its wide-range of application in biological microenvironment the interactions between human hemoglobin (HHb) and CQD and also with ethylenediamine-functionalized CQD (NCQD) are assessed using several techniques. Firstly, UV-vis absorption spectra of HHb reveal hyperchromic effect in the region of absorbance of tryptophan and tyrosine residues and also hypochromicity of Soret band in presence of CQD and NCQD. Interestingly, steady-state fluorescence spectroscopy reveal distinct fluorescence enhancement of HHb with significant red shift thereby indicating exposures of tryptophan and tyrosine residues to a more hydrophilic environment. However synchronous fluorescence spectra reveal that the microenvironment of tryptophan and tyrosine residues is altered in opposite manner, i.e. exposure of tryptophan residues to a more hydrophilic environment and the tyrosine residues to a more hydrophobic environment. Moreover the fluorescence enhancement is observed to be accompanied by increase in average fluorescence-lifetime and decrease in steady-state anisotropy thus signifying a decrease in restriction of rotational motion. Furthermore tryptophan residues within HHb appear to interact more with CQD compared to NCQD. Thermodynamic parameters as revealed by Isothermal Titration Calorimetry (ITC) demonstrate that electrostatic, hydrogen bonding and hydrophobic interactions are the predominant modes of interactions in presence of CQD. Whereas hydrophobic and hydrogen bonding interactions are the major interacting forces in presence of NCQD with five-site sequential binding as best-fit model in both the cases. Such interactions also appear to be associated with an increase in aggregation of HHb as evident from the measurements by atomic force microscopy (AFM) and dynamic light scattering (DLS) study. Although FT-IR spectra display alteration of amide I band, but the overall secondary structure of HHb seems to be nearly retained even in presence of CQDs, as evident in the CD spectra. These observations thus highlight the potential biomedical application of CQDs in biological microenvironment of human especially as drug-delivery system. Also bimolecular interaction of HHb as a model protein with other nanoparticles at the nano bio-interface has been outlined.


Subject(s)
Hemoglobins/analysis , Hemoglobins/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Carbon/chemistry , Humans , Models, Molecular , Thermodynamics
2.
J Agric Food Chem ; 63(10): 2606-17, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25686266

ABSTRACT

Copper deficiency or toxicity in agricultural soil circumscribes a plant's growth and physiology, hampering photochemical and biochemical networks within the system. So far, copper sulfate (CS) has been used widely despite its toxic effect. To get around this long-standing problem, copper nanoparticles (CuNPs) have been synthesized, characterized, and tested on mung bean plants along with commercially available salt CS, to observe morphological abnormalities enforced if any. CuNPs enhanced photosynthetic activity by modulating fluorescence emission, photophosphorylation, electron transport chain (ETC), and carbon assimilatory pathway under controlled laboratory conditions, as revealed from biochemical and biophysical studies on treated isolated mung bean chloroplast. CuNPs at the recommended dose worked better than CS in plants in terms of basic morphology, pigment contents, and antioxidative activities. CuNPs showed elevated nitrogen assimilation compared to CS. At higher doses CS was found to be toxic to the plant system, whereas CuNP did not impart any toxicity to the system including morphological and/or physiological alterations. This newly synthesized polymer-encapsulated CuNPs can be utilized as nutritional amendment to balance the nutritional disparity enforced by copper imbalance.


Subject(s)
Copper/metabolism , Fabaceae/metabolism , Copper Sulfate/metabolism , Copper Sulfate/toxicity , Fabaceae/chemistry , Metal Nanoparticles/analysis , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...