Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 8(8): 835-840, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835798

ABSTRACT

Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).

2.
Eur J Med Chem ; 133: 268-286, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28390958

ABSTRACT

Glucokinase activators (GKAs) are among the emerging drug candidates for the treatment of type 2 diabetes (T2D). Despite effective blood glucose lowering in clinical trials, many pan-GKAs "acting both in pancreas and liver" have been discontinued from clinical development mainly because of their potential to cause hypoglycemia. Pan-GKAs over sensitize pancreatic GK, resulting in insulin secretion even at sub-normoglycemic level which might be a possible explanation for hypoglycemia. An alternative approach to minimize the risk of hypoglycemia is to use liver-directed GKAs, which are reported to be advancing well in clinical development. Here, we report the discovery and structure-activity relationship (SAR) studies on a novel 2-phenoxy-acetamide series with the aim of identifying a liver-directed GKA. Incorporation of a carboxylic acid moiety as an active hepatocyte uptake recognizing element at appropriate position of 2-phenoxy-acetamide core led to the identification of 26, a potent GKA with predominant liver-directed pharmacokinetics in mice. Compound 26 on oral administration significantly reduced blood glucose levels during an oral glucose tolerance test (oGTT) performed in diet-induced obese (DIO) mice, while showing no sign of hypoglycemia in normal C57 mice over a 10-fold dose range, even when dosed at fasted condition. Together, these data demonstrate a liver-directed GKA has beneficial effect on glucose homeostasis with reduced risk of hypoglycemia.


Subject(s)
Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Glucokinase/metabolism , Hyperglycemia/drug therapy , Hypoglycemia/chemically induced , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Animals , Blood Glucose/metabolism , Cells, Cultured , Enzyme Activators/adverse effects , Enzyme Activators/pharmacokinetics , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Hypoglycemia/blood , Hypoglycemia/metabolism , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Liver/drug effects , Liver/metabolism , Mice, Obese , Molecular Docking Simulation , Rats
3.
Eur J Med Chem ; 134: 218-229, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28415011

ABSTRACT

Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 µM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/therapeutic use , Asthma/drug therapy , Receptor, Adenosine A2B/metabolism , Xanthine/chemistry , Xanthine/therapeutic use , Adenosine A2 Receptor Antagonists/metabolism , Adenosine A2 Receptor Antagonists/pharmacokinetics , Animals , Asthma/chemically induced , Asthma/metabolism , Dogs , Drug Design , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Ovalbumin , Rats , Receptor, Adenosine A2B/chemistry , Xanthine/metabolism , Xanthine/pharmacokinetics
4.
Bioorg Med Chem ; 25(1): 67-74, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28340988

ABSTRACT

A series of novel amino-carboxylic based pyrazole as protein tyrosine phosphatase 1B (PTP1B) inhibitors were designed on the basis of structure-based pharmacophore model and molecular docking. Compounds containing different hydrophobic tail (1,2-diphenyl ethanone, oxdiadizole and dibenzyl amines) were synthesized and evaluated in PTP1B enzymatic assay. Structure-activity relationship based optimization resulted in identification of several potent, metabolically stable and cell permeable PTP1B inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Amination , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Drug Design , Humans , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
5.
Bioorg Med Chem ; 25(6): 1963-1975, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28238512

ABSTRACT

Multipronged approach was used to synthesize a library of diverse C-8 cyclopentyl hypoxanthine analogs from a common intermediate III. Several potent and selective compounds were identified and evaluated for pharmacokinetic (PK) properties in Wistar rats. One of the compounds 14 with acceptable PK parameters was selected for testing in in vivo primary acute diuresis model. The compound demonstrated significant diuretic activity in this model.


Subject(s)
Adenosine A1 Receptor Antagonists/chemistry , Adenosine A1 Receptor Antagonists/pharmacology , Hypoxanthines/chemistry , Hypoxanthines/pharmacology , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A1 Receptor Antagonists/pharmacokinetics , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Chromatography, Liquid , Drug Design , HEK293 Cells , Humans , Hypoxanthines/chemical synthesis , Hypoxanthines/pharmacokinetics , Male , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Radioligand Assay , Rats , Rats, Wistar
6.
J Med Chem ; 60(2): 681-694, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28055204

ABSTRACT

Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position led to identification of compound 25 as a potent and selective A2A adenosine receptor (A2AAdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A2A receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds 41 and 49 demonstrated a number of positive attributes with respect to in vitro ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability, respectively, in rat. Further, compound 49 displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Benzothiazoles/pharmacology , Cyclohexanols/pharmacology , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Administration, Oral , Animals , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacokinetics , Cyclohexanols/chemical synthesis , Cyclohexanols/pharmacokinetics , Drug Design , HEK293 Cells , Humans , Levodopa/pharmacology , Male , Microsomes, Liver/metabolism , Molecular Docking Simulation , Rats, Wistar , Structure-Activity Relationship
7.
Eur J Med Chem ; 127: 986-996, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27842891

ABSTRACT

A2BAdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective A2BAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective A2BAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel A2BAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (Ki = 1 and 1.5 nM, respectively) and selectivity for A2BAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.


Subject(s)
Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacology , Drug Design , Receptor, Adenosine A2B/metabolism , Xanthine/chemical synthesis , Xanthine/pharmacology , Adenosine A2 Receptor Antagonists/chemistry , Animals , Brain/drug effects , Brain/metabolism , Chemistry Techniques, Synthetic , Male , Mice , Structure-Activity Relationship , Xanthine/chemistry
8.
Bioorg Med Chem Lett ; 22(8): 2843-9, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22424978

ABSTRACT

A series of novel heterocyclic carboxylic acid based protein tyrosine phosphatase 1B (PTP1B) inhibitors with hydrophobic tail have been synthesized and characterized. Structure-activity relationship (SAR) optimization resulted in identification of several potent, selective (over the highly homologous T-cell protein tyrosine phosphatase, TCPTP) and metabolically stable PTP1B inhibitors. Compounds 7a, 19a and 19c showed favorable cell permeability and pharmacokinetic properties in mouse with moderate to very good oral (% F=13-70) bio-availability.


Subject(s)
Carboxylic Acids/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemical synthesis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Administration, Oral , Animals , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Enzyme Activation/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred C57BL , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 21(10): 3103-9, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21450468

ABSTRACT

In an effort to develop safe and efficacious compounds for the treatment of metabolic disorders, novel thiophene substituted oxazole containing α-alkoxy-phenylpropanoic acid derivatives are designed as highly potent PPARα/γ dual agonists. These compounds were found to be efficacious at picomolar concentrations. Lead compound 18d has emerged as very potent PPARα/γ dual agonist demonstrating potent antidiabetic and lipid lowering activity at a very low dose and did not exhibit any significant signs of toxicity in rodents.


Subject(s)
PPAR alpha/agonists , PPAR gamma/agonists , Phenylpropionates/chemical synthesis , Phenylpropionates/pharmacology , Administration, Oral , Animals , Cell Line , Dose-Response Relationship, Drug , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Inhibitory Concentration 50 , Mice , Molecular Structure , Oxazoles/chemistry , Phenylpropionates/chemistry , Protein Binding/drug effects , Rats , Rats, Wistar , Rosiglitazone , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology , Thiophenes/chemistry
10.
SELECTION OF CITATIONS
SEARCH DETAIL
...