Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(22): 32350-32370, 2024 May.
Article in English | MEDLINE | ID: mdl-38649612

ABSTRACT

In evaluating the integrated remote sensing-based ecological index (RSEIPCA), principal component analysis (PCA) has been extensively utilized. However, the conventional PCA-based RSEI (RSEIPCA) cannot accurately evaluate component indicators' spatially shifting relative significance. This study presented a novel RSEI evaluation strategy based on geographically weighted principal component analysis (RSEIGWPCA) to address this deficiency. Second, compared to the classic RSEIPCA, RSEIGWPCA was tested at English Bazar and surrounding areas using two-fold validation. In this regard, the Jaccard test from a different setting and correlation analysis were utilized to examine the geographical distribution of RSEI derived by PCA and GWPCA. The validation output revealed better effectiveness of GWPCA over PCA in assessing the RSEI. The findings revealed that (i) in RSEI assessment, the spatial heterogeneity of the dataset helped to formulate individual weights by GWPCA that was not performed by PCA; and (ii) the areas having higher RSEI were primarily located around the Chatra wetland of this study area, and the areas with lower RSEI were located mainly in the industrial part. It has been concluded that RSEIGWPCA is a helpful approach in the RSEI evaluating for the regional and local scale like English bazaar city and its neighbourhood.


Subject(s)
Environmental Monitoring , Principal Component Analysis , Remote Sensing Technology , Environmental Monitoring/methods , Ecology
3.
Sci Rep ; 11(1): 4470, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627693

ABSTRACT

The loss of peri-urban wetlands is a major side effect of urbanization in India in recent days. Timely and proper assessment of wetland area change is essential for the conservation of wetlands. This study follows the integrated way of the peri-urban wetland degradation assessment in the case of medium and small-size urban agglomerations with a special focus on Chatra Wetland. Analysis of land-use and land cover (LULC) maps of the past 28 years shows a decrease of 60% area of the wetland including marshy land. This has reduced the ecosystem services value by about 71.90% over the period 1991-2018. From this end, The Land Change Modeler of IDRISI TerrSet using the combination of MLPNN and Markov Chain has been used to predict the LULC map of this region. The scenario-based modeling following the LULC conversion and nine explanatory variables suggests the complete loss of this wetland by 2045. However, the authors have also tried to present a future LULC pattern of this region based on an environmental perspective. This proposed map suggests possible areas for built-up expansion on the western side of the city without significantly affecting the environment.

4.
Sustain Cities Soc ; 65: 102577, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33163331

ABSTRACT

The emergence of COVID-19 has brought a serious global public health threats especially for most of the cities across the world even in India more than 50 % of the total cases were reported from large ten cities. Kolkata Megacity became one of the major COVID-19 hotspot cities in India. Living environment deprivation is one of the significant risk factor of infectious diseases transmissions like COVID-19. The paper aims to examine the impact of living environment deprivation on COVID-19 hotspot in Kolkata megacity. COVID-19 hotspot maps were prepared using Getis-Ord-Gi* statistic and index of multiple deprivations (IMD) across the wards were assessed using Geographically Weighted Principal Component Analysis (GWPCA).Five count data regression models such as Poisson regression (PR), negative binomial regression (NBR), hurdle regression (HR), zero-inflated Poisson regression (ZIPR), and zero-inflated negative binomial regression (ZINBR) were used to understand the impact of living environment deprivation on COVID-19 hotspot in Kolkata megacity. The findings of the study revealed that living environment deprivation was an important determinant of spatial clustering of COVID-19 hotspots in Kolkata megacity and zero-inflated negative binomial regression (ZINBR) better explains this relationship with highest variations (adj. R2: 71.3 %) and lowest BIC and AIC as compared to the others.

5.
Environ Chall (Amst) ; 4: 100096, 2021 Aug.
Article in English | MEDLINE | ID: mdl-38620946

ABSTRACT

The first incident of COVID-19 case in India was recorded on 30th January, 2020 which turns to 100,000 marks on May 19th and by June 3rd it was over 200,000 active cases and 5,800 deaths. Geographic Information System (GIS) based spatial models can be helpful for better understanding of different factors that have triggered COVID-19 spread at district level in India. In the present study, 19 variables were considered that can explain the variability of the disease. Different spatial statistical techniques were used to describe the spatial distribution of COVID-19 and identify significant clusters. Spatial lag and error models (SLM and SEM) were employed to examine spatial dependency, geographical weighted regression (GWR) and multi-scale GWR (MGWR) were employed to examine at local level. The results show that the global models perform poorly in explaining the factors for COVID-19 incidences. MGWR shows the best-fit-model to explain the variables affecting COVID-19 (R2= 0.75) with lowest AICc value. Population density, urbanization and bank facility were found to be most susceptible for COVID-19 cases. These indicate the necessity of effective policies related to social distancing, low mobility. Mapping of different significant variables using MGWR can provide significant insights for policy makers for taking necessary actions.

SELECTION OF CITATIONS
SEARCH DETAIL
...