Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pigment Cell Melanoma Res ; 36(1): 19-32, 2023 01.
Article in English | MEDLINE | ID: mdl-36112085

ABSTRACT

Lineage-specific differentiation programs are activated by epigenetic changes in chromatin structure. Melanin-producing melanocytes maintain a gene expression program ensuring appropriate enzymatic conversion of metabolites into the pigment, melanin, and transfer to surrounding cells. During neuroectodermal development, SMARCA4 (BRG1), the catalytic subunit of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes, is essential for lineage specification. SMARCA4 is also required for development of multipotent neural crest precursors into melanoblasts, which differentiate into pigment-producing melanocytes. In addition to the catalytic domain, SMARCA4 and several SWI/SNF subunits contain bromodomains which are amenable to pharmacological inhibition. We investigated the effects of pharmacological inhibitors of SWI/SNF bromodomains on melanocyte differentiation. Strikingly, treatment of murine melanoblasts and human neonatal epidermal melanocytes with selected bromodomain inhibitors abrogated melanin synthesis and visible pigmentation. Using functional genomics, iBRD9, a small molecule selective for the bromodomain of BRD9 was found to repress pigmentation-specific gene expression. Depletion of BRD9 confirmed a requirement for expression of pigmentation genes in the differentiation program from melanoblasts into pigmented melanocytes and in melanoma cells. Chromatin immunoprecipitation assays showed that iBRD9 disrupts the occupancy of BRD9 and the catalytic subunit SMARCA4 at melanocyte-specific loci. These data indicate that BRD9 promotes melanocyte pigmentation whereas pharmacological inhibition of BRD9 is repressive.


Subject(s)
Melanins , Pigmentation Disorders , Infant, Newborn , Humans , Mice , Animals , Melanins/metabolism , Melanocytes/metabolism , Cell Differentiation , Epigenesis, Genetic , Pigmentation Disorders/metabolism , Pigmentation , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
2.
Cancers (Basel) ; 12(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825729

ABSTRACT

The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3ß, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3ß, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.

3.
Epigenetics Chromatin ; 13(1): 14, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32151278

ABSTRACT

BACKGROUND: Pharmacologic inhibition of bromodomain and extra-terminal (BET) proteins is currently being explored as a new therapeutic approach in cancer. Some studies have also implicated BET proteins as regulators of cell identity and differentiation through their interactions with lineage-specific factors. However, the role of BET proteins has not yet been investigated in melanocyte differentiation. Melanocyte inducing transcription factor (MITF) is the master regulator of melanocyte differentiation, essential for pigmentation and melanocyte survival. In this study, we tested the hypothesis that BET proteins regulate melanocyte differentiation through interactions with MITF. RESULTS: Here we show that chemical inhibition of BET proteins prevents differentiation of unpigmented melanoblasts into pigmented melanocytes and results in de-pigmentation of differentiated melanocytes. BET inhibition also slowed cell growth, without causing cell death, increasing the number of cells in G1. Transcriptional profiling revealed that BET inhibition resulted in decreased expression of pigment-specific genes, including many MITF targets. The expression of pigment-specific genes was also down-regulated in melanoma cells, but to a lesser extent. We found that RNAi depletion of the BET family members, bromodomain-containing protein 4 (BRD4) and bromodomain-containing protein 2 (BRD2) inhibited expression of two melanin synthesis enzymes, TYR and TYRP1. Both BRD4 and BRD2 were detected on melanocyte promoters surrounding MITF-binding sites, were associated with open chromatin structure, and promoted MITF binding to these sites. Furthermore, BRD4 and BRD2 physically interacted with MITF. CONCLUSION: These findings indicate a requirement for BET proteins in the regulation of pigmentation and melanocyte differentiation. We identified changes in pigmentation specific gene expression that occur upon BET inhibition in melanoblasts, melanocytes, and melanoma cells.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Differentiation , Melanocytes/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cells, Cultured , HEK293 Cells , Humans , Melanins/biosynthesis , Melanins/genetics , Melanocytes/cytology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription Factors/genetics
5.
PLoS One ; 14(4): e0204387, 2019.
Article in English | MEDLINE | ID: mdl-30995246

ABSTRACT

Recent high-throughput-sequencing of cancer genomes has identified oncogenic mutations in the B-Raf genetic locus as one of the critical events in melanomagenesis. B-Raf encodes a serine/threonine kinase that regulates the MAPK/ERK kinase (MEK) and extracellular signal-regulated kinase (ERK) protein kinase cascade. In normal cells, the activity of B-Raf is tightly regulated and is required for cell growth and survival. B-Raf gain-of-function mutations in melanoma frequently lead to unrestrained growth, enhanced cell invasion and increased viability of cancer cells. Although it is clear that the invasive phenotypes of B-Raf mutated melanoma cells are stringently dependent on B-Raf-MEK-ERK activation, the downstream effector targets that are required for oncogenic B-Raf-mediated melanomagenesis are not well defined. miRNAs have regulatory functions towards the expression of genes that are important in carcinogenesis. We observed that miR-10b expression correlates with the presence of the oncogenic B-Raf (B-RafV600E) mutation in melanoma cells. While expression of miR-10b enhances anchorage-independent growth of B-Raf wild-type melanoma cells, miR-10b silencing decreases B-RafV600E cancer cell invasion in vitro. Importantly, the expression of miR-10b is required for B-RafV600E-mediated anchorage independent growth and invasion of melanoma cells in vitro. Taken together our results suggest that miR-10b is an important mediator of oncogenic B-RafV600E activity in melanoma.


Subject(s)
Gain of Function Mutation , Gene Expression Regulation, Neoplastic , Melanoma/metabolism , MicroRNAs/biosynthesis , Proto-Oncogene Proteins B-raf/metabolism , RNA, Neoplasm/biosynthesis , Amino Acid Substitution , Cell Line, Tumor , Cell Survival , Humans , MAP Kinase Signaling System , Melanoma/genetics , Melanoma/pathology , MicroRNAs/genetics , Mutation, Missense , Neoplasm Invasiveness , Proto-Oncogene Proteins B-raf/genetics , RNA, Neoplasm/genetics
6.
J Cell Physiol ; 234(7): 11780-11791, 2019 07.
Article in English | MEDLINE | ID: mdl-30515787

ABSTRACT

SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.


Subject(s)
Cell Differentiation , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle , Cell Differentiation/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Melanins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Microphthalmia-Associated Transcription Factor/chemistry , Models, Biological , Oxidoreductases/genetics , Oxidoreductases/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Subunits/metabolism
7.
Nucleic Acids Res ; 45(11): 6442-6458, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28431046

ABSTRACT

Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.


Subject(s)
Cell Differentiation , DNA Helicases/metabolism , Melanocytes/physiology , Nuclear Proteins/metabolism , SOXE Transcription Factors/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Enhancer Elements, Genetic , Gene Expression , Gene Expression Regulation , Melanins/biosynthesis , Membrane Glycoproteins/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Oxidoreductases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...