Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(41): 415403, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31292289

ABSTRACT

The bonding between copper (Cu) and iron (Fe) to form a bi-layer composite using explosive welding is investigated through molecular dynamics simulation. Three stages in the joining process, including loading, unloading and cooling, are sequentially considered in modelling the formation of the bonding interface. The results demonstrate that three types of bonding interfaces can be obtained, based on whether melting happens. The morphologies and the atomic structures of the three types bonding interfaces in each stage are analyzed. The formation of nanograins near the bonding interface is mainly due to the melting and subsequent cooling process. Atomic simulations of tensile tests reveal that melting is not a necessary factor to form the bonding interface. What's more, depending on whether melting occurs, the joining mechanism can be regarded as pressure welding or fusion-diffusion welding.

2.
ScientificWorldJournal ; 2013: 256758, 2013.
Article in English | MEDLINE | ID: mdl-24453818

ABSTRACT

The structure and microhardness of Cu-Ta joints produced by explosive welding were studied. It was found that, during explosive welding, an intermediate layer 20⋯40 µ m thick with a finely dispersed heterophase structure, formed between the welded copper and tantalum plates. The structure of the layer was studied by scanning and transmission electron microscopy. Microvolumes with tantalum particles distributed in a copper matrix and microvolumes of copper particles in a tantalum matrix were detected. The tantalum particles in copper have a size of 5⋯500 nm, with a predominance of 5⋯50 nm particles. A mechanism for the formation of the finely dispersed heterophase structure in explosive welding is proposed. The microhardness of interlayers with the heterophase structure reaches 280 HV, which far exceeds the microhardness of copper (~130 HV) and tantalum (~160 HV). Many twins of deformation origin were found in the structure of the copper plate. The effect of heating temperature in the range from 100 to 900°C on the microhardness of copper, tantalum, and the Cu-Ta welded joint was studied. Upon heating to 900°C, the microhardness of the intermediate layer decreases from 280 to 150 HV. The reduction in the strength properties of the weld material is mainly due to structural transformations in copper.

SELECTION OF CITATIONS
SEARCH DETAIL
...