Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0264458, 2022.
Article in English | MEDLINE | ID: mdl-35294466

ABSTRACT

As people, animals and materials are transported across increasingly large distances in a globalized world, threats to our biosecurity and food security are rising. Aotearoa New Zealand is an island nation with many endemic species, a strong local agricultural industry, and a need to protect these from pest threats, as well as the economy from fraudulent commodities. Mitigation of such threats is much more effective if their origins and pathways for entry are understood. We propose that this may be addressed in Aotearoa using strontium isotope analysis of both pests and products. Bioavailable radiogenic isotopes of strontium are ubiquitous markers of provenance that are increasingly used to trace the origin of animals and plants as well as products, but currently a baseline map across Aotearoa is lacking, preventing use of this technique. Here, we have improved an existing methodology to develop a regional bioavailable strontium isoscape using the best available geospatial datasets for Aotearoa. The isoscape explains 53% of the variation (R2 = 0.53 and RMSE = 0.00098) across the region, for which the primary drivers are the underlying geology, soil pH, and aerosol deposition (dust and sea salt). We tested the potential of this model to determine the origin of cow milk produced across Aotearoa. Predictions for cow milk (n = 33) highlighted all potential origin locations that share similar 87Sr/86Sr values, with the closest predictions averaging 7.05 km away from their true place of origin. These results demonstrate that this bioavailable strontium isoscape is effective for tracing locally produced agricultural products in Aotearoa. Accordingly, it could be used to certify the origin of Aotearoa's products, while also helping to determine if new pest detections were of locally breeding populations or not, or to raise awareness of imported illegal agricultural products.


Subject(s)
Strontium Isotopes , Strontium , Animals , Biosecurity , Humans , New Zealand , Strontium/analysis , Strontium Isotopes/analysis
2.
J Fish Biol ; 90(2): 528-548, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27615608

ABSTRACT

Radiogenic strontium isotope ratios (87 Sr:86 Sr) in otoliths were compared with isotope ratios predicted from models and observed in water sampling to reconstruct the movement histories of smallmouth bass Micropterus dolomieu between main-river and adjacent tributary habitats. A mechanistic model incorporating isotope geochemistry, weathering processes and basin accumulation reasonably predicted observed river 87 Sr:86 Sr across the study area and provided the foundations for experimental design and inferring fish provenance. Exchange between rivers occurred frequently, with nearly half (48%) of the 209 individuals displaying changes in otolith 87 Sr:86 Sr reflecting movement between isotopically distinct rivers. The majority of between-river movements occurred in the first year and often within the first few months of life. Although more individuals were observed moving from the main river into tributaries, this pattern did not necessarily reflect asymmetry in exchange. Several individuals made multiple movements between rivers over their lifetimes; no patterns were found, however, that suggest seasonal or migratory movement. The main-river sport fishery is strongly supported by recruitment from tributary spawning, as 26% of stock size individuals in the main river were spawned in tributaries. The prevailing pattern of early juvenile dispersal documented in this study has not been observed previously for this species and suggests that the process of establishing seasonal home-range areas occurs up to 2 years earlier than originally hypothesized. Extensive exchange between rivers would have substantial implications for management of M. dolomieu populations in river-tributary networks.


Subject(s)
Animal Distribution , Bass/physiology , Ecosystem , Otolithic Membrane/chemistry , Animals , Conservation of Natural Resources , Models, Theoretical , Rivers/chemistry , Strontium Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...