Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 84(5): 1103-1124, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34534109

ABSTRACT

Low impact development practices (LID) as alternative measures of urban drainage can be used within the approach of resources recycling and co-management. This study evaluates the potential contribution of a bioretention system to flood control, non-potable water demands (NPD) and resources co-management. Bioretention setups were tested experimentally under variable conditions to identify operational key-factors to multiple purposes. Additionally, the efficiencies obtained for laboratory scale were extrapolated for household and watershed scale, quantifying the indicators of water demand reduction (WDR), energy demand reduction (EDR) and carbon emission reduction (CER) for hybrid systems with LID. The laboratory results indicated that the use of a bioretention with a submerged zone can improve the quality of the water recovered for reuse, while maintaining the efficiency of runoff retention and peak flow attenuation. Comparing the bioretention effluent quality with the Brazilian standards for stormwater reuse, the parameters color, turbidity, E. coli and metals were above the limits, indicating the necessity of a better treatment for solids particles and disinfection. Expanding the analysis to watershed scale, the bioretention helped to reduce NPD demands up to 45%, leading to a reduction in energy demand and carbon emission from the centralized water supply system.


Subject(s)
Nitrogen , Rain , Escherichia coli , Floods , Laboratories
2.
J Environ Manage ; 275: 111173, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32866923

ABSTRACT

The necessity of incorporating a resilience-informed approach into urban planning and its decision-making is felt now more than any time previously, particularly in low and middle income countries. In order to achieve a successful transition to sustainable, resilient and cost-effective cities, there is a growing attention given to more effective integration of nature-based solutions, such as Sustainable Drainage Systems (SuDS), with other urban components. The experience of SuDS integration with urban planning, in developed cities, has proven to be an effective strategy with a wide range of advantages and lower costs. The effective design and implementation of SuDS requires a multi-objective approach by which all four pillars of SuDS design (i.e., water quality, water quantity, amenity and biodiversity) are considered in connection to other urban, social, and economic aspects and constraints. This study develops a resilience-driven multi-objective optimisation model aiming to provide a Pareto-front of optimised solutions for effective incorporation of SuDS into (peri)urban planning, applied to a case study in Brazil. This model adopts the SuDS's two pillars of water quality and water quantity as the optimisation objectives with its level of spatial distribution as decision variables. Also, an improved quality of life index (iQoL) is developed to re-evaluate the optimal engineering solutions to encompass the amenity and biodiversity pillars of SuDS. Rain barrels, green roofs, bio-retention tanks, vegetation grass swales and permeable pavements are the suitable SuDS options identified in this study. The findings show that the most resilient solutions are costly but this does not guarantee higher iQoL values. Bio-retention tanks and grass swales play effective roles in promotion of water quality resilience but this comes with considerable increase in costs. Permeable pavements and green roofs are effective strategies when flood resilience is a priority. Rain barrel is a preferred solution due to the dominance of residential areas in the study area and the lower cost of this option.


Subject(s)
Quality of Life , Rain , Brazil , Cities , Floods
3.
J Environ Manage ; 248: 109266, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31330273

ABSTRACT

Low Impact Development practices have emerged as alternative solutions for traditional urban drainage by restoring the pre-development hydrologic regime. In subtropical climate areas, the performance of these systems is still poorly understood. This study aims to assess the performance of a bioretention basin in a subtropical climate area during an entire hydrological year in order to analyze the differences between dry and rainy seasons. The main climatic factors and conditions influencing the runoff retention efficiency and peak attenuation were also analyzed in order to support bioretention design for flood control purposes. Data of 29 precipitation events were collected over three years (2016-2018). The results show that the bioretention system retained between 9% and 100% of the runoff volume with an average efficiency of 65% during a whole hydrological year. The average runoff retention efficiency was of 73% and 61% for dry and rainy seasons, respectively. This difference is explained by the climatic factors which affected the bioretention performance. During dry periods, the antecedent soil moisture condition and runoff generation rate were found to be more important than the total precipitation depth, while the runoff retention efficiency was primarily influenced by the total rainfall depth and the maximum rainfall intensity during the wet period. Future research should focus on each of these periods in more detail, including water quality aspects.


Subject(s)
Rain , Water Movements , Brazil , Hydrology , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...