Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 373: 114670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158007

ABSTRACT

Hsp70 is the main molecular chaperone responsible for cellular proteostasis under normal conditions and for restoring the conformation or utilization of proteins damaged by stress. Increased expression of endogenous Hsp70 or administration of exogenous Hsp70 is known to exert neuroprotective effects in models of many neurodegenerative diseases. In this study, we have investigated the effect of exogenous Hsp70 on recovery from peripheral nerve injury in a model of sciatic nerve transection in rats. It was shown that recombinant Hsp70 after being added to the conduit connecting the ends of the nerve at the site of its extended severance, migrates along the nerve into the spinal ganglion and is retained there at least three days. In animals with the addition of recombinant Hsp70 to the conduit, a decrease in apoptosis in the spinal ganglion cells after nerve rupture, an increase in the level of PTEN-induced kinase 1 (PINK1), an increase in markers of nerve tissue regeneration and a decrease in functional deficit were observed compared to control animals. The obtained data indicate the possibility of using recombinant Hsp70 preparations to accelerate the recovery of patients after neurotrauma.


Subject(s)
Neuroprotective Agents , Humans , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Axotomy , Neurons/metabolism , Sciatic Nerve/injuries , Apoptosis , HSP70 Heat-Shock Proteins/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Ganglia, Spinal/metabolism , Nerve Regeneration
2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955732

ABSTRACT

Peripheral nerve injury remains a serious problem for medicine, with no effective method of treatment at the moment. The most prominent example of this problem is neonatal brachial plexus palsy, which results from the stretching of the brachial plexus nerves in the birth or perinatal period. Multipotent mesenchymal cells (MSCs) and the extracellular vesicles (EVs) they produce are known to have a marked neuroprotective effect in central nervous system injuries. We suggested that the use of MSCs-derived EVs may be an effective approach to the regeneration of peripheral nerves after injury. Sciatic nerve injury was modeled in rats via crushing, and then a gel containing MSCs-EVs was applied to the injured area. After 15 and 30 days, a histological, physiological, and functional assessment of nerve, dorsal root ganglia (DRG), and innervated muscles' recovery was performed. Transplantation of EVs to the area of sciatic nerve injury significantly reduced muscle atrophy as compared to the control group. Functional recovery of the innervated muscles, as measured by the extensor postural thrust test, was revealed 30 days after the surgery. We associate the obtained results with EVs-induced neuroprotective mechanisms, which were expressed in a decrease in apoptotic neuronal death and an increase in regeneration-associated proteins NF-200 and GAP-43, as well as in DRG and damaged nerve. We suggest that the therapeutic scheme we used is efficient for the treatment of acute peripheral nervous system injuries and can be transferred to the clinics. However, additional studies are required for a more detailed analysis of neuroprotection mechanisms.


Subject(s)
Crush Injuries , Extracellular Vesicles , Mesenchymal Stem Cells , Peripheral Nerve Injuries , Sciatic Neuropathy , Animals , Crush Injuries/pathology , Extracellular Vesicles/pathology , Female , Humans , Mesenchymal Stem Cells/metabolism , Nerve Crush , Nerve Regeneration/physiology , Peripheral Nerve Injuries/pathology , Pregnancy , Rats , Sciatic Nerve/metabolism , Sciatic Neuropathy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...