Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 319: 115704, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35842992

ABSTRACT

A novel aerator for enhancing the oxygen transfer rate and efficiency, named multistage vortex aerator (MVA), was developed. It uses vortex flow in repeated stages to increase the gas-liquid interfacial area and to decrease the thickness of the stagnant layer at the interface between the two phases. The basic characteristics of oxygen transfer using this aerator were investigated using the American Society of Civil Engineers standard procedure. The MVA could rapidly transfer oxygen to water to a concentration higher than 40 mg/L in 60 min owing to the effect of high purity oxygen, additional pressure induced by water and gas, and vortex flow dynamics. A gas transfer model was developed for describing the non-steady state operation of the aerator. This model is based on the mass and molar balances of oxygen in gas and water. It could successfully simulate the DO change inside the aerator. This study can help better understand the oxygen transfer mechanism and evaluate the performance of the new aerator at the various temperatures, pressures, and gas compositions found in diverse environmental systems.


Subject(s)
Oxygen , Water
2.
J Environ Sci (China) ; 74: 168-176, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30340670

ABSTRACT

This study investigates the removal of arsenite (As(III)) from water using dithionite activated by UV light. This work evaluated the removal kinetics of As(III) under UV light irradiation as affected by dithionite dose and light intensity, and characterized the nature of the precipitated solids using XPS and SEM-EDS. Photolysis of dithionite was observed by measuring dithionite concentration using UV absorbance at 315nm. This study also investigated the effect of UV light path length on soluble As concentrations to understand resolubilization mechanisms. Total soluble As concentrations were observed to decrease with reaction time due to reduction of arsenite to form solids having a yellow-orange color. The removal mechanism was found to be reductive precipitation that formed solids of elemental arsenic or arsenic sulfide. However, these solids were observed to resolubilize at later times after dithionite had been consumed. Resolubilization of As was prevented and additional As removal was obtained by frequent dosing of dithionite throughout the experiment. As(III) removal is attributed to photolysis of dithionite by UV light and production of reactive radicals that reduce As(III) and convert it to solid forms.


Subject(s)
Arsenites/chemistry , Arsenites/isolation & purification , Chemical Precipitation , Dithionite/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Oxidation-Reduction , Photolysis , Solutions
4.
Sci Total Environ ; 624: 872-877, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29274611

ABSTRACT

A kinetic model for the competitions was applied to understand the reductive dechlorination of tertiary DNAPL mixtures containing PCE, TCE, and 1,1,1-TCA. The model assumed that the mass transfer rates were sufficiently rapid that the target compounds in the solution and the DNAPL mixture were in phase equilibrium. Dechlorination was achieved using either a mixture of Fe(II), Fe(III), and Ca(OH)2 (Fe(II/III)-L) or a mixture of Fe(II) and Portland cement (Fe(II)-C). PCE in the DNAPL mixtures was gradually reduced and it was reduced more rapidly using Fe(II)-C than Fe(II/III)-L. A constant total TCE concentration in the DNAPL mixtures was observed, which implied that the rate of loss of TCE by dechlorination and possibly other processes was equal to the rate of production of TCE by PCE dechlorination. On the other hand, 1,1,1-TCA in the DNAPL mixtures was removed rapidly and its degradation rate by Fe(II/III)-L was faster than by Fe(II)-C. The coefficients in the kinetic model (ki, Ki) were observed to decrease in the order 1,1,1-TCA>PCE>TCE, for both Fe(II/III)-L and Fe(II)-C. The concentrations of target compounds in solution were the effective solubilities, because of the assumption of phase equilibrium and were calculated with Rault's Law. The concentration changes observed were an increase and then a decrease for PCE, a sharp and then gradual increase for TCE, and a dramatic decrease for 1,1,1-TCA. The fraction of initial and theoretical reductive capacity revealed that Fe(II)-C had ability to degrade target compounds.

5.
Environ Sci Technol ; 51(22): 13372-13379, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29083909

ABSTRACT

Solar-driven heterogeneous photocatalysis has been widely studied as a promising technique for degradation of organic pollutants in wastewater. Herein, we have developed a sulfite-enhanced visible-light-driven photodegradation process using BiOBr/methyl orange (MO) as the model photocatalyst/pollutant system. We found that the degradation rate of MO was greatly enhanced by sulfite, and the enhancement increased with the concentration of sulfite. The degradation rate constant was improved by 29 times in the presence of 20 mM sulfite. Studies using hole scavengers suggest that sulfite radicals generated by the reactions of sulfite (sulfite anions or bisulfite anions) with holes or hydroxyl radicals are the active species for MO photodegradation using BiOBr under visible light. In addition to the BiOBr/MO system, the sulfite-assisted photocatalysis approach has been successfully demonstrated in BiOBr/rhodamine B (RhB), BiOBr/phenol, BiOI/MO, and Bi2O3/MO systems under visible light irradiation, as well as in TiO2/MO system under simulated sunlight irradiation. The developed method implies the potential of introducing external active species to improve photodegradation of organic pollutants and the beneficial use of air pollutants for the removal of water pollutants since sulfite is a waste from flue gas desulfurization process.


Subject(s)
Photolysis , Water Pollutants , Catalysis , Light , Sulfites
6.
Chemosphere ; 163: 351-358, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27552695

ABSTRACT

This study investigates the removal of selenium (IV) from water by reductive precipitation using sodium sulfide at neutral pH. Also, it examines the application of UV light as an activating method to enhance reductive precipitation. Furthermore, this work evaluates the effects of sulfide dose and solution pH on behavior of Se(IV) reduction. Selenium was effectively removed in sulfide solution at both neutral and acidic pH. UV irradiation did not enhance removal efficiency of Se(IV) at conditions tested, but it affected solids morphology and composition. SEM/EDS and XPS results showed that selenite was reduced to elemental Se or Se-S precipitates (e.g. SenS8-n) in sulfide solution. High resolution S 2p XPS spectra suggested the presence of sulfur-containing anions (e.g. S2O3(2-), HSO3(-), etc.) or elemental S (S(0)), monosulfide (S(2-)), and polysulfides (Sn(2-)), which could be produced from sulfide photolysis or reaction with Se. In addition, large aggregates of irregular shape, which suggest Se-S precipitates or elemental sulfur, were found more prominently at pH 4 than at pH 7, and they were more noticeable in the presence of UV with longer reaction times. In addition, XRD patterns showed that gray elemental Se solids were dominant in experiments without UV, whereas Se-S precipitates (Se3S5) with an orange color were found in those with UV.


Subject(s)
Selenium/analysis , Sulfides/chemistry , Water Pollutants, Chemical/analysis , Water/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Photolysis , Selenium/chemistry , Selenium Compounds/chemistry , Solutions , Spectrum Analysis , Sulfides/analysis , Sulfur/chemistry , Ultraviolet Rays , X-Ray Diffraction
7.
Chemosphere ; 117: 663-72, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25461933

ABSTRACT

Advanced Reduction Processes (ARP) have been developed by combining UV irradiation with reducing reagents, which produces reactive reducing free radicals that degrade contaminants (e.g. vinyl chloride, 1,2-dichloroethane, perchlorate, and bromate). This study investigates bromate destruction by ARPs using medium-pressure mercury UV light lamp (UV-M) and low-pressure mercury UV light lamp (UV-L). Effects of experimental parameters including initial bromate concentration, reducing reagent (sulfite) dose, and pH on bromate removal kinetics and quantum yield were evaluated. The pseudo-first-order rate constant (kobs) by UV-M ARP was greater by 3 times than that by UV-L ARP. UV-M and UV-L achieved a complete bromate removal of an initial concentration at 500 ppb with fluences of 10.5 J cm−2 and 73.5 J cm−2, respectively. It was found that direct photolysis is a dominant mechanism with the UV-M ARP showing that the effect of sulfite dose had no apparent influence on the bromate removal, whereas kobs was dependent on the sulfite doses in UV-L/sulfite ARP. In the presence of sulfite, kobs was affected by the solution pH in both the UV-M and UV-L ARPs. The pH effect on UV-L ARP or UV-M ARP was explained by the effect of pH on the sulfite species distribution between sulfite and bisulfite or the hydrated electrons concentrations. Also it was found that dominant reaction mechanism of bromate removal was changed by initial bromate concentrations, and its behavior was varied dependent on the UV light sources.


Subject(s)
Bromates/radiation effects , Photolysis , Ultraviolet Rays , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/radiation effects , Free Radicals/chemistry , Mercury/chemistry , Oxidation-Reduction , Sulfites/chemistry
8.
Article in English | MEDLINE | ID: mdl-24521418

ABSTRACT

Perchlorate can be destroyed by Advanced Reduction Processes (ARPs) that combine chemical reductants (e.g., sulfite) with activating methods (e.g., UV light) in order to produce highly reactive reducing free radicals that are capable of rapid and effective perchlorate reduction. However, natural organic matter (NOM) exists widely in the environment and has the potential to influence perchlorate reduction by ARPs that use UV light as the activating method. Batch experiments were conducted to obtain data on the impacts of NOM and wavelength of light on destruction of perchlorate by the ARPs that use sulfite activated by UV light produced by low-pressure mercury lamps (UV-L) or by KrCl excimer lamps (UV-KrCl). The results indicate that NOM strongly inhibits perchlorate removal by both ARP, because it competes with sulfite for UV light. Even though the absorbance of sulfite is much higher at 222 nm than that at 254 nm, the results indicate that a smaller amount of perchlorate was removed with the UV-KrCl lamp (222 nm) than with the UV-L lamp (254 nm). The results of this study will help to develop the proper way to apply the ARPs as practical water treatment processes.


Subject(s)
Humic Substances/analysis , Perchlorates/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Water Purification/methods , Chromatography, Ion Exchange , Oxidation-Reduction , Perchlorates/analysis , Photochemistry/methods , Spectrophotometry, Ultraviolet , Water Pollutants, Chemical/analysis
9.
Water Res ; 53: 310-21, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24530550

ABSTRACT

This study investigated removal of Hg(II) from water using FeS(s) with batch and continuous contact filtration systems. For the batch system, kinetic experiments showed that removal of Hg(II) by FeS(s) was rapid at lower concentration (500 µM), but at higher concentration (1000 and 1250 µM), more time was required to achieve greater than 99% removal. The concentration of iron released to the solution remained relatively low, typically below 3 µM. This would theoretically present less than 1% of the Hg(II) removed. Thus, a simple exchange of Hg(II) for Fe(II) in the solid (FeS(s)) does not explain the results, but if the Fe(II) released could react to form another solids, low concentrations of Fe do not preclude a mechanism in which Hg(II) reacts to form HgS and release Fe(II). A continuous contact dead-end ultrafiltration (DE/UF) system was developed to treat water containing Hg(II) by applying a FeS(s) suspension with stirred or non-stirred modes. A major reason for applying stirring to the system was to investigate the role of "shear" flow in rejection of Hg(II)-contacted FeS(s) by a UF membrane and the stability of Hg on the FeS(s). The Hg(II)-contacted FeS(s) was completely rejected by the DE/UF system and mercury was strongly retained on the FeS(s) particles. Almost no release of Hg(II) (≈0 mM) from the FeS(s) solids was observed when they were contacted with 0.1M-thiosulfate, regardless of whether the system was operated in stirred or non-stirred mode. However, rapid oxidation of FeS(s) was observed in the stirred system but not in the non-stirred system. Determining the mechanism of oxidation requires further study, but it is important because oxidation reduces the ability of the solids to remove additional Hg(II).


Subject(s)
Ferrous Compounds/chemistry , Mercury/chemistry , Ultrafiltration , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Kinetics , Oxidation-Reduction
10.
J Hazard Mater ; 262: 348-56, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24056247

ABSTRACT

Advanced reduction processes (ARPs) are a new class of water treatment processes that combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. The combination of sulfite with low-pressure ultraviolet light (UV-L) is the most effective ARP tested to date. In this study, batch kinetic experiments were conducted to characterize the kinetics of perchlorate destruction by the sulfite/UV-L ARP. Experimental variables were pH, sulfite concentration, temperature and UV-L irradiance. The rate of perchlorate degradation by sulfite/UV-L increases with increasing pH and temperature and increases with increasing sulfite concentration to a maximum and then decreases due to lack of mixing within the reactor system used. Efficiency of perchlorate degradation was measured as a quantum yield and was observed to decrease with increasing sulfite concentration. The ultimate product of perchlorate degradation by the sulfite/UV-L ARP is chloride, but chlorate was detected as an intermediate.


Subject(s)
Perchlorates/chemistry , Sulfites/chemistry , Ultraviolet Rays , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction
11.
Environ Eng Sci ; 30(5): 264-271, 2013 May.
Article in English | MEDLINE | ID: mdl-23840160

ABSTRACT

A new class of treatment processes called advanced reduction processes (ARPs) is proposed. ARPs combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. Batch screening experiments were conducted to identify effective ARPs by applying several combinations of activation methods (ultraviolet light, ultrasound, electron beam, and microwaves) and reducing agents (dithionite, sulfite, ferrous iron, and sulfide) to degradation of four target contaminants (perchlorate, nitrate, perfluorooctanoic acid, and 2,4 dichlorophenol) at three pH-levels (2.4, 7.0, and 11.2). These experiments identified the combination of sulfite activated by ultraviolet light produced by a low-pressure mercury vapor lamp (UV-L) as an effective ARP. More detailed kinetic experiments were conducted with nitrate and perchlorate as target compounds, and nitrate was found to degrade more rapidly than perchlorate. Effectiveness of the UV-L/sulfite treatment process improved with increasing pH for both perchlorate and nitrate. We present the theory behind ARPs, identify potential ARPs, demonstrate their effectiveness against a wide range of contaminants, and provide basic experimental evidence in support of the fundamental hypothesis for ARP, namely, that activation methods can be applied to reductants to form reducing radicals that degrade oxidized contaminants. This article provides an introduction to ARPs along with sufficient data to identify potentially effective ARPs and the target compounds these ARPs will be most effective in destroying. Further research will provide a detailed analysis of degradation kinetics and the mechanisms of contaminant destruction in an ARP.

12.
Sci Total Environ ; 454-455: 578-83, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23570912

ABSTRACT

Vinyl chloride (VC) poses a threat to humans and environment due to its toxicity and carcinogenicity. In this study, an advanced reduction process (ARP) that combines sulfite with UV light was developed to destroy VC. The degradation of VC followed pseudo-first-order decay kinetics and the effects of several experimental factors on the degradation rate constant were investigated. The largest rate constant was observed at pH9, but complete dechlorination was obtained at pH11. Higher sulfite dose and light intensity were found to increase the rate constant linearly. The rate constant had a little drop when the initial VC concentration was below 1.5mg/L and then was approximately constant between 1.5mg/L and 3.1mg/L. A degradation mechanism was proposed to describe reactions between VC and the reactive species that were produced by the photolysis of sulfite. A kinetic model that described major reactions in the system was developed and was able to explain the dependence of the rate constant on the experimental factors examined. This study may provide a new treatment technology for the removal of a variety of halogenated contaminants.


Subject(s)
Vinyl Chloride/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Halogenation , Hydrogen-Ion Concentration , Models, Theoretical , Oxidation-Reduction , Sulfites/chemistry , Ultraviolet Rays , Waste Disposal, Fluid/methods
13.
J Colloid Interface Sci ; 392: 311-318, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23195771

ABSTRACT

Reliable techniques for synthesizing pyrite are necessary in order to develop effective treatment methods that use pyrite to remove arsenic from water and to stabilize arsenic in wastes. The Fe(3+)/HS(-) values of 0.500 and 0.571 at 60°C and pH values ranging from 3.6 through 5.6 were found to produce pyrite most efficiently. Removal of As(V) was faster than removal of As(III) and the extent of removal of both As(III) and As(V) were more accurately described by the Langmuir adsorption model. Removal of As(III) was observed to increase as pH increased across the range investigated (pH 7-10). However, an optimum pH in the range between pH 8 and pH 9 was observed for removal of As(V). Sorption envelopes for As(III) showed low removal at low pH, increasing removal as pH was increased and moderate irreversibility as pH was titrated backward. Sorption envelopes for As(V) showed similar behavior except low removals were observed initially at high pH, removals increased as pH decreased and moderate to high levels of irreversibility were observed as pH was raised back to the initial values.


Subject(s)
Arsenates/isolation & purification , Arsenites/isolation & purification , Iron/chemistry , Sulfides/chemistry , Adsorption , Hydrogen-Ion Concentration , Sulfides/chemical synthesis , Surface Properties , Time Factors
14.
J Colloid Interface Sci ; 385(1): 122-9, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22878003

ABSTRACT

The kinetics of perchlorate reduction by zero-valent titanium (ZVT) undergoing electrical pitting corrosion was described by interactions of two domains (pit and solution). Two kinetic models were developed based on two possible inhibition mechanisms. A competitive adsorption model was developed based on surface coverage of perchlorate and chloride on bare ZVT, and a Ti(II) consumption model was developed based on Ti(II) oxidation by electrochemically developed chlorine. Both models well predicted perchlorate concentration changes in the solution. The competitive adsorption model showed that chloride has a higher adsorption affinity on both sites where oxidative dissolution of ZVT occurs and where chloride oxidation occurs. Also, the rates of perchlorate removal and chloride oxidation were directly proportional to current applied. For the Ti(II) consumption model, the rate constant of Ti(II) production was dependent on current. The rate of chloride oxidation is also believed to be proportional to current, but this conclusion cannot be made with confidence. Both kinetic models described changes in perchlorate concentration well. However, the Ti(II) consumption model was limited in its ability to predict chloride concentration. This limitation was probably caused by a lack of available information like electrochemical oxidation of chloride on bare ZVT and Ti(II) oxidation by chlorine.

15.
J Hazard Mater ; 229-230: 273-81, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22727482

ABSTRACT

This study has focused on developing two nanoporous titania adsorbents (NTA) to enhance removal efficiency of adsorption process for As(V) by characterizing the effects of pH and phosphate concentration on their sorption capacities and behaviors. One type of adsorbent is a mesoporous titania (MT) solid phase and the other is group of a highly ordered mesoporous silica solids (SBA-15) that can incorporate different levels of reactive titania sorption sites. Microscopic analysis showed that Ti((25))-SBA-15 (Ti/SBA=0.25 g/g) had titania nanostructured mesopores that do not rupture the highly ordered hexagonal silica framework. However, MT has disordered, wormhole-like mesopores that are caused by interparticle porosity. Adsorption experiments showed that Ti((25))-SBA-15 had a greater sorption capacity for As(V) than did Ti((15))-SBA-15 or Ti((35))-SBA-15 and the amount of As(V) adsorbed generally decreased as pH increased. Higher removal of As(V) was observed with Ti((25))-SBA-15 than with MT at pH 4, but MT had higher removals at higher pH (7, 9.5), even though MT has a lower specific surface area. However, in the presence of phosphate, MT showed higher removal of As(V) at low pH rather than did Ti((25))-SBA-15. As expected, the NTAs showed very fast sorption kinetics, but they followed a bi-phasic sorption pattern.


Subject(s)
Arsenic/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Phosphates/chemistry , Solutions
16.
J Colloid Interface Sci ; 380(1): 128-33, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22633577

ABSTRACT

In this study, chemical degradation of perchlorate was investigated using partially oxidized titanium ions (Ti(II) and Ti(III)). Results of UV spectra showed that the patterns of absorbance at all ratios of F/Ti(0) were similar each other, except the lowest F/Ti(0) of 0.5 (25 mM F(-)) where mixture of Ti(II) and Ti(III) might be present, resulted in shift of the peak to wavelength of 480 nm. The rate of perchlorate degradation was fastest at lowest F/Ti(0) ratio. Among catalysts investigated, only rhenium enhanced the perchlorate degradation in the presence of Ti(II), but no effect of catalysts in Ti(III). In addition, high ionic strength did not enhance the perchlorate-Ti(III) reaction, but high acid concentration did. Addition of solid acid catalysts (SACs) to Ti(III) solution showed slower perchlorate degradation, probably due to decrease in Ti(III) concentration by adsorption onto SAC. Rate constants for perchlorate degradation in Ti(III) were twofold higher than in Ti(II) when 5 N HCl used.

17.
Sci Total Environ ; 430: 82-7, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22634553

ABSTRACT

The reactivities of various types of iron mixtures to degrade chlorinated hydrocarbons (PCE, TCE and 1,1,1-TCA) in the form of non-aqueous phase liquids were investigated. The iron mixtures included a mixture of Fe(II) and Portland cement (Fe(II)-C), a mixture of Fe(II), Fe(III) and Ca(OH)(2) (Fe(II/III)-L), and a mixture of Fe(II), Fe(III), Ca(OH)(2), and Portland cement (Fe(II/III)-C). When the same amount of Fe(II) was used, Fe(II)-C was more reactive with chlorinated ethylenes (i.e. PCE and TCE) than Fe(II/III)-L. The reductive pathway for high concentrations of total PCE (i.e. above solubility) with Fe(II)-C was determined to be a combination of two-electron transfer, ß-elimination and hydrogenolysis. Increasing the cement dose from 5% to 10% in Fe(II)-C did not affect PCE dechlorination rates, but it did favor the ß-elimination pathway. In addition, when Fe(II/III)-C with 5%C was used, PCE dechlorination was similar to that by Fe(II)-C, but this mixture did not effectively degrade TCE. A modified second-order kinetic model was developed and shown to appropriately describe degradation of TCE at high concentrations. Fe(II/III)-L effectively degraded high concentrations of 1,1,1-TCA at rates that were similar to those obtained with Fe(II)-C using 10% C. Moreover, both increasing cement doses and the presence of Fe(III) increased dechlorination rates of 1,1,1-TCA, which was mainly through the hydrogenolysis pathway. The reactivity of Fe(II/III)-L was strongly dependent on the target compound (i.e. less reactivity with TCE, more with 1,1,1-TCA). Therefore, Fe(II/III)-L could be a potential mixture for degrading 1,1,1-TCA, but it should be modified to degrade TCE more effectively.


Subject(s)
Environmental Pollution/prevention & control , Tetrachloroethylene/chemistry , Trichloroethanes/chemistry , Trichloroethylene/chemistry , Calcium Hydroxide/analysis , Calcium Hydroxide/chemistry , Construction Materials/analysis , Ferric Compounds/analysis , Ferric Compounds/chemistry , Ferrous Compounds/analysis , Ferrous Compounds/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Oxidation-Reduction , Solubility , Tetrachloroethylene/analysis , Trichloroethanes/analysis , Trichloroethylene/analysis
18.
J Colloid Interface Sci ; 368(1): 496-504, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22122947

ABSTRACT

Pyrite was hydrothermally synthesized and used to remove Se(IV) and Se(VI) selectively from solution. Surface analyses of pyrite before and after contact with Se(IV) and Se(VI) were conducted using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). All solid samples were acquired by allowing 3.1 mmol/L of Se(IV) or Se(VI) to react with 1 g/L of pyrite for 1, 15, or 30 days. The XPS spectra were fitted using the XPSPEAK program that applies a Gaussian Lorentzian function. The fitted spectra indicate that Se(IV) more strongly reacts with the surface-bound S than with the surface-bound Fe of pyrite. However, there is no apparent evidence of surface reaction with Se(VI). Specifically, fitted XPS spectra showed the presence of sulfide and tetrathionate on the surface, indicating that sulfur (S(2)(2-)) at the surface of pyrite can be both oxidized and reduced after contact with Se(IV). This occurs via surface disproportionation, possibly resulting in the formation of surface precipitates. Evidence for the formation of precipitates was seen in SEM and AFM images that showed rod-like particles and a phase image with higher voltage. In contrast, there were no important changes in the pyrite after contact with Se(VI) over a period of 30 days.


Subject(s)
Iron/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Selenium/chemistry , Sulfides/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
19.
Chemosphere ; 86(8): 860-5, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22154340

ABSTRACT

A kinetic study of nitrate reduction by green rust (GR), a group of layered Fe(II)-Fe(III) hydroxide solids, was performed using a batch reactor system. The reduction rate of nitrate by GRs was affected by the anion content in the interlayer of GRs. GR containing F(-) (GR-F) showed the fastest reduction rate while GR-SO(4) showed 9 times slower reaction rate than GR-F. The addition of 1mM Pt or Cu to GR that contained 85 mM Fe(II) improved the reduction kinetics of nitrate by up to 200 times. Pt was an effective activating agent for all GRs. The sequential step reaction model that we proposed appropriately simulated the experimental data. The fastest nitrate reduction by GR-F with Pt was achieved at pH 9 among 7.5 to 11. At that condition, 1mM nitrate transformed completely into ammonium within 23 min.


Subject(s)
Environmental Pollutants/isolation & purification , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Nitrates/isolation & purification , Platinum/chemistry , Environmental Pollutants/chemistry , Kinetics , Nitrates/chemistry , Oxidation-Reduction
20.
J Hazard Mater ; 197: 183-9, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21993148

ABSTRACT

Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77±0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.


Subject(s)
Corrosion , Electrochemistry/methods , Perchlorates/chemistry , Titanium/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...