Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 150(Pt 10): 3507-17, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15470128

ABSTRACT

Two large tetracycline resistance (TcR) plasmids have been completely sequenced, the pTet plasmid (45.2 kb) from Campylobacter jejuni strain 81-176 and a plasmid pCC31 (44.7 kb) from Campylobacter coli strain CC31 that was isolated from a human case of severe gastroenteritis in the UK. Both plasmids are mosaic in structure, having homologues of genes found in a variety of different commensal and pathogenic bacteria, but nevertheless, showed striking similarities in DNA sequence and overall gene organization. Several predicted proteins encoded by genes involved in conjugation showed highest homology to proteins found in Actinobacillus actinomycetemcomitans, a periodontal pathogen. In addition to replication- and conjugation-associated genes, both plasmids carried a tet(O) gene encoding tetracycline resistance, a 6 kb ORF encoding a putative methylase and a number of genes of unknown function. The pTet plasmid co-exists in C. jejuni strain 81-176 with a smaller, previously characterized, non-conjugative plasmid pVir that also encodes a type IV secretion system (T4SS) that may affect virulence. In contrast, the T4SS encoded by pTet and pCC31 are shown to mediate bacterial conjugation between Campylobacter. The possible origin and evolution of pCC31 and pTet is discussed.


Subject(s)
Campylobacter/genetics , Conjugation, Genetic , DNA, Bacterial/analysis , Plasmids/genetics , Tetracycline Resistance/genetics , Base Sequence , Campylobacter/classification , Molecular Sequence Data
2.
Infect Immun ; 70(11): 6242-50, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12379703

ABSTRACT

The circular pVir plasmid of Campylobacter jejuni strain 81-176 was determined to be 37,468 nucleotides in length with a G+C content of 26%. A total of 83% of the plasmid represented coding information, and all but 2 of the 54 predicted open reading frames were encoded on the same DNA strand. There were seven genes on the plasmid in a continguous region of 8.9 kb that encoded orthologs of type IV secretion proteins found in Helicobacter pylori, including four that have been described previously (D. J. Bacon, R. A. Alm, D. H. Burr, L. Hu, D. J. Kopecko, C. P. Ewing, T. J. Trust, and P. Guerry, Infect. Immun. 68:4384-4390, 2000). There were seven other pVir-encoded proteins that showed significant similarities to proteins encoded by the plasticity zones of either H. pylori J99 or 26695. Mutational analyses of 19 plasmid genes identified 5 additional genes that affect in vitro invasion of intestinal epithelial cells. These included one additional gene encoding a component of a type IV secretion system, an ortholog of Cj0041 from the chromosome of C. jejuni NCTC 11168, two Campylobacter plasmid-specific genes, and an ortholog of HP0996 from the plasticity zone of H. pylori 26695.


Subject(s)
Campylobacter jejuni/genetics , DNA Mutational Analysis , DNA, Bacterial/chemistry , Plasmids , Base Composition , Campylobacter jejuni/pathogenicity , Cell Line , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...