Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Sens ; 9(8): 3828-3839, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39047295

ABSTRACT

A continuous levodopa sensor can improve the quality of life for patients suffering with Parkinson's disease by enhancing levodopa titration and treatment effectiveness; however, its development is currently hindered by the absence of a specific levodopa molecular recognition element and limited insights into how real-time monitoring might affect clinical outcomes. This gap in research contributes to clinician uncertainty regarding the practical value of continuous levodopa monitoring data. This paper examines the current state of levodopa sensing and the inherent limitations in today's methods. Further, these challenges are described, including aspects such as interference from the metabolic pathway and adjunct medications, temporal resolution, and clinical questions, with a specific focus on a comprehensive selection of molecules, such as adjunct medications and structural isomers, as an interferent panel designed to assess and validate future levodopa sensors. We review insights and lessons from previously reported levodopa sensors and present a comparative analysis of potential molecular recognition elements, discussing their advantages and drawbacks.


Subject(s)
Levodopa , Parkinson Disease , Levodopa/analysis , Levodopa/chemistry , Humans , Parkinson Disease/drug therapy , Parkinson Disease/diagnosis , Antiparkinson Agents/therapeutic use , Drug Monitoring/methods
2.
Biosens Bioelectron ; 252: 116092, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38401283

ABSTRACT

This work presents the development of an enzyme fuel cell, termed "BioBattery", that utilizes multicopper oxidases as the anodic enzyme in a non-diffusion limited system. We evaluated various enzyme variants as the anode, including multicopper oxidase from Pyrobaculum aerophilum, laccase from Trametes versicolor, and bilirubin oxidase from Myrothecium verrucaria. Several combinations of cathodes were also examined, focusing on the reduction of oxygen as the primary electron acceptor. The optimal pairing used multicopper oxidase from Pyrobaculum aerophilum as the anode and amine reactive phenazine ethosulfate modified bovine serum albumin as the cathode. BioBattery was integrated with our previously developed BioCapacitor, proving capable of consistently powering a 470 µF capacitor, positioning it as a modular power source for wearable and implantable systems. This research work addresses and overcomes some of the fundamental limitations seen in enzyme fuel cells, where power and current are often limited by substrate accessibility to the active electrode surface. (152 words).


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Trametes , Laccase , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL