Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 22-30, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36601804

ABSTRACT

Friedreich's ataxia (FRDA) is a hereditary cardiodegenerative and neurodegenerative disease that affects 1 in 50 000 Americans. FRDA arises from either a cellular inability to produce sufficient quantities or the production of a nonfunctional form of the protein frataxin, a key molecule associated with mitochondrial iron-sulfur cluster biosynthesis. Within the mitochondrial iron-sulfur cluster (ISC) assembly pathway, frataxin serves as an allosteric regulator for cysteine desulfurase, the enzyme that provides sulfur for [2Fe-2S] cluster assembly. Frataxin is a known iron-binding protein and is also linked to the delivery of ferrous ions to the scaffold protein, the ISC molecule responsible for the direct assembly of [2Fe-2S] clusters. The goal of this report is to provide structural details of the Drosophila melanogaster frataxin ortholog (Dfh), using both X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, in order to provide the foundational insight needed to understand the structure-function correlation of the protein. Additionally, NMR iron(II) titrations were used to provide metal contacts on the protein to better understand how it binds iron and aids its delivery to the ISC scaffold protein. Here, the structural and functional similarities of Dfh to its orthologs are also outlined. Structural data show that bacterial, yeast, human and Drosophila frataxins are structurally similar, apart from a structured C-terminus in Dfh that is likely to aid in protein stability. The iron-binding location on helix 1 and strand 1 of Dfh is also conserved across orthologs.


Subject(s)
Drosophila melanogaster , Neurodegenerative Diseases , Animals , Humans , Drosophila melanogaster/metabolism , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Iron/metabolism , Sulfur/metabolism , Frataxin
2.
Micron ; 153: 103181, 2022 02.
Article in English | MEDLINE | ID: mdl-34823116

ABSTRACT

Iron-Sulfur (Fe-S) clusters are essential for life, as they are widely utilized in nearly every biochemical pathway. When bound to proteins, Fe-S clusters assist in catalysis, signal recognition, and energy transfer events, as well as additional cellular pathways including cellular respiration and DNA repair and replication. In Eukaryotes, Fe-S clusters are produced through coordinated activity by mitochondrial Iron-Sulfur Cluster (ISC) assembly pathway proteins through direct assembly, or through the production of the activated sulfur substrate used by the Cytosolic Iron-Sulfur Cluster Assembly (CIA) pathway. In the mitochondria, Fe-S cluster assembly is accomplished through the coordinated activity of the ISC pathway protein complex composed of a cysteine desulfurase, a scaffold protein, the accessory ISD11 protein, the acyl carrier protein, frataxin, and a ferredoxin; downstream events that accomplish Fe-S cluster transfer and delivery are driven by additional chaperone/delivery proteins that interact with the ISC assembly complex. Deficiency in human production or activity of Fe-S cluster containing proteins is often detrimental to cell and organism viability. Here we summarize what is known about the structure and functional activities of the proteins involved in the early steps of assembling [2Fe-2S] clusters before they are transferred to proteins devoted to their delivery. Our goal is to provide a comprehensive overview of how the ISC assembly apparatus proteins interact to make the Fe-S cluster which can be delivered to proteins downstream to the assembly event.


Subject(s)
Iron-Sulfur Proteins , Humans , Iron/metabolism , Iron-Sulfur Proteins/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Sulfur
3.
Mol Pharm ; 18(4): 1544-1557, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33621099

ABSTRACT

Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.


Subject(s)
Drugs, Generic/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Anemia, Iron-Deficiency/drug therapy , Chemistry, Pharmaceutical , Chromatography, Gel , Drugs, Generic/administration & dosage , Drugs, Generic/pharmacokinetics , Drugs, Generic/standards , Dynamic Light Scattering , Equivalence Trials as Topic , Ferric Compounds/administration & dosage , Ferric Compounds/pharmacokinetics , Ferric Compounds/standards , Humans , Nanoparticles/administration & dosage , Nanoparticles/standards , Quality Control , Ultracentrifugation
4.
Biochemistry ; 59(8): 970-982, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32027124

ABSTRACT

Cleavage and polyadenylation specificity factor 30 (CPSF30) is a "zinc finger" protein that plays a crucial role in the transition of pre-mRNA to RNA. CPSF30 contains five conserved CCCH domains and a CCHC "zinc knuckle" domain. CPSF30 activity is critical for pre-mRNA processing. A truncated form of the protein, in which only the CCCH domains are present, has been shown to specifically bind AU-rich pre-mRNA targets; however, the RNA binding and recognition properties of full-length CPSF30 are not known. Herein, we report the isolation and biochemical characterization of full-length CPSF30. We report that CPSF30 contains one 2Fe-2S cluster in addition to five zinc ions, as measured by inductively coupled plasma mass spectrometry, ultraviolet-visible spectroscopy, and X-ray absorption spectroscopy. Utilizing fluorescence anisotropy RNA binding assays, we show that full-length CPSF30 has high binding affinity for two types of pre-mRNA targets, AAUAAA and polyU, both of which are conserved sequence motifs present in the majority of pre-mRNAs. Binding to the AAUAAA motif requires that the five CCCH domains of CPSF30 be present, whereas binding to polyU sequences requires the entire, full-length CPSF30. These findings implicate the CCHC "zinc knuckle" present in the full-length protein as being critical for mediating polyU binding. We also report that truncated forms of the protein, containing either just two CCCH domains (ZF2 and ZF3) or the CCHC "zinc knuckle" domain, do not exhibit any RNA binding, indicating that CPSF30/RNA binding requires several ZF (and/or Fe-S cluster) domains working in concert to mediate RNA recognition.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , Iron-Sulfur Proteins/metabolism , Poly U/metabolism , RNA Precursors/metabolism , Amino Acid Sequence , Animals , Cattle , Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage And Polyadenylation Specificity Factor/genetics , Cobalt/chemistry , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Mutation , Protein Binding , RNA Precursors/genetics , Zinc/chemistry , Zinc Fingers , alpha-Synuclein/genetics
5.
Chemistry ; 26(7): 1535-1547, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31663171

ABSTRACT

The zinc finger protein tristetraprolin (TTP) regulates inflammation by downregulating cytokine mRNAs. Misregulation results in arthritis, sepsis and cancer, and there is an interest in modulating TTP activity with exogenous agents. Gold has anti-inflammatory properties and has recently been shown to modulate the signaling pathway that produces TTP, suggesting that TTP may be a target of gold. The reactivity of [AuIII (terpy)Cl]Cl2 with TTP was investigated by UV/Vis spectroscopy, spin-filter inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy and native electrospray ionization mass spectrometry. AuIII was found to replace zinc in the protein active site in the reduced AuI form, with the AuI ion coordinated to two cysteine residues in a linear geometry. The replacement of ZnII with AuI results in loss of both secondary structure and RNA binding function. In contrast, when ZnII TTP is bound to its RNA target, no replacement of ZnII with AuI is observed, even in the presence of excess AuIII terpy. This discovery of differential reactivity of gold with TTP versus TTP/RNA offers a potential strategy for selective targeting with gold complexes to control inflammation.


Subject(s)
Cysteine/chemistry , Cytokines/chemistry , RNA, Messenger/metabolism , RNA/chemistry , Tristetraprolin/chemistry , Humans , Inflammation , Organogold Compounds/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , Tristetraprolin/genetics , Tristetraprolin/metabolism , Zinc Fingers
6.
J Inorg Biochem ; 203: 110882, 2020 02.
Article in English | MEDLINE | ID: mdl-31683123

ABSTRACT

Iron is the most prevalent metal in biology. Its chemical and redox versatility allows it to direct activity of many Fe binding proteins. While iron's biological applications are diverse, challenges inherent in having Fe(II) present at high abundance means cells must ensure delivery to the correct recipient, while also ensuring its chemistry is regulated. Having a detailed understanding of the biophysical characteristics of a protein's iron binding characteristics allows us to understand general cellular metal homeostasis events. Unfortunately, most spectroscopic techniques available to measure metal binding affinity require protein be in a homogeneous state. Homogeneity creates an artificial environment when measuring metal binding since within cells numerous additional metal binding biomolecules compete with the target. Here we investigate commercially available Fe(II) chelators with spectral markers coupled to metal binding and release. Our goal was to determine their utility as competitors while measuring aspects of metal binding by apoproteins during a metal binding competition assay. Adding chelators during apoprotein metal binding mimics heterogeneous metal binding environments present in vivo, and provides a more realistic metal binding affinity measurement. Ferrous chelators explored within this report include: Rhod-5N, Magfura-2, Fura-4F, Fura-2, and TPA (Tris-(2-byridyl-methyl)amine; each forms a 1:1 complex with Fe(II) and combined cover a binding range of 5 orders of magnitude (micromolar to nanomolar Kd). These chelators were used to calibrate binding affinities for yeast and fly frataxin (Yfh1 and Dfh, respectively), involved in mitochondrial FeS cluster bioassembly.


Subject(s)
Iron Chelating Agents/chemistry , Iron-Binding Proteins/metabolism , Iron/metabolism , Animals , Drosophila/enzymology , Iron/chemistry , Protein Binding , Titrimetry , Yeasts/enzymology , Frataxin
7.
Nat Commun ; 9(1): 4276, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323281

ABSTRACT

Methane-oxidizing microbes catalyze the oxidation of the greenhouse gas methane using the copper-dependent enzyme particulate methane monooxygenase (pMMO). Isolated pMMO exhibits lower activity than whole cells, however, suggesting that additional components may be required. A pMMO homolog, ammonia monooxygenase (AMO), converts ammonia to hydroxylamine in ammonia-oxidizing bacteria (AOB) which produce another potent greenhouse gas, nitrous oxide. Here we show that PmoD, a protein encoded within many pmo operons that is homologous to the AmoD proteins encoded within AOB amo operons, forms a copper center that exhibits the features of a well-defined CuA site using a previously unobserved ligand set derived from a cupredoxin homodimer. PmoD is critical for copper-dependent growth on methane, and genetic analyses strongly support a role directly related to pMMO and AMO. These findings identify a copper-binding protein that may represent a missing link in the function of enzymes critical to the global carbon and nitrogen cycles.


Subject(s)
Ammonia/metabolism , Bacterial Proteins/metabolism , Betaproteobacteria/metabolism , Copper/metabolism , Methane/metabolism , Amino Acid Motifs , Bacterial Proteins/chemistry , Homeostasis , Ligands , Oxidation-Reduction , Protein Domains , Protein Multimerization
8.
J Biol Chem ; 293(27): 10457-10465, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29739854

ABSTRACT

Particulate methane monooxygenase (pMMO) is a copper-dependent integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus (Mcc.) capsulatus (Bath) and Methylomicrobium (Mm.) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure, as observed by electron paramagnetic resonance (EPR) spectroscopy. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z reveals a mononuclear copper center in the PmoB subunit and indicates that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment and provide valuable insight into pMMO function.


Subject(s)
Cell Membrane/metabolism , Copper/metabolism , Methane/metabolism , Methylococcus capsulatus/enzymology , Micelles , Oxygenases/chemistry , Oxygenases/metabolism , Cell Membrane/chemistry , Copper/chemistry , Crystallography, X-Ray , Methane/chemistry , Methylococcus capsulatus/growth & development , Models, Molecular , Oxidation-Reduction , Protein Conformation
9.
Proc Natl Acad Sci U S A ; 115(9): 2108-2113, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440418

ABSTRACT

The copper-transporting P1B-ATPases, which play a key role in cellular copper homeostasis, have been divided traditionally into two subfamilies, the P1B-1-ATPases or CopAs and the P1B-3-ATPases or CopBs. CopAs selectively export Cu+ whereas previous studies and bioinformatic analyses have suggested that CopBs are specific for Cu2+ export. Biochemical and spectroscopic characterization of Sphaerobacter thermophilus CopB (StCopB) show that, while it does bind Cu2+, the binding site is not the prototypical P1B-ATPase transmembrane site and does not involve sulfur coordination as proposed previously. Most important, StCopB exhibits metal-stimulated ATPase activity in response to Cu+, but not Cu2+, indicating that it is actually a Cu+ transporter. X-ray absorption spectroscopic studies indicate that Cu+ is coordinated by four sulfur ligands, likely derived from conserved cysteine and methionine residues. The histidine-rich N-terminal region of StCopB is required for maximal activity, but is inhibitory in the presence of divalent metal ions. Finally, reconsideration of the P1B-ATPase classification scheme suggests that the P1B-1- and P1B-3-ATPase subfamilies both comprise Cu+ transporters. These results are completely consistent with the known presence of only Cu+ within the reducing environment of the cytoplasm, which should eliminate the need for a Cu2+ P1B-ATPase.


Subject(s)
Bacterial Proteins/classification , Bacterial Proteins/metabolism , Cation Transport Proteins/classification , Cation Transport Proteins/metabolism , Copper/metabolism , Gene Expression Regulation, Enzymologic/physiology , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , Biological Transport , Cation Transport Proteins/genetics , Genetic Variation , Protein Binding , Sequence Alignment , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...