Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(12): 8071-8084, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188872

ABSTRACT

Recruitment for many arid-zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less-dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well-watered (Ψsoil = -0.15 MPa) and water-limited (Ψsoil = -0.35 MPa) conditions. Success at three key recruitment stages-seed germination, emergence, and survival-and final seed viability of ungerminated seeds was assessed. For all species, less-dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35-40°C) under water-limited conditions caused 95%-100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30-40°C) and well-watered conditions, loss of viability was greater from the less-dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress-driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid-zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.

2.
J Environ Manage ; 241: 179-186, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30999267

ABSTRACT

Rehabilitation of degraded drylands is challenged by environmental and anthropogenic constraints, such as limited availability of locally-sourced topsoil and poor quality alternative soil substrates. Current rehabilitation practices, at times, utilise inorganic soil amendments to improve the physicochemical and biological characteristics of reconstructed soil profiles. These approaches may be appropriate for dryland rehabilitation, but there is limited research available regarding the benefits of using these amendments. Here, we present a study in the Pilbara region of Western Australia, an arid landscape subject to intensive mining that currently uses inorganic soil amendments (gypsum and urea) in post-mining rehabilitation. The aim of this study was to assess the effectiveness of these amendments to (1) promote seed germination, seedling emergence and seedling growth across five plant species and, (2) re-instate soil quality in mine waste substrates. A series of glasshouse experiments assessed eight application combinations of these amendments in two alternative substrates and compared these to unamended substrates and topsoil. Soil amendments had a limited influence on seed germination, were detrimental to seedling emergence and resulted in increased seedling mortality. Mortality in the waste ranged from 2 to 61% but increased to 7-92% in amended waste. Seedling growth improved with high doses of amendments in waste, with a 1.3-5.6-fold increase across all plant species. Soil quality was relatively unaffected by amendments with soil nitrogen ranging from 0.01 to 0.08%, organic carbon from 0.01 to 0.12% and soil microbial activity from 2.3 to 2.4 ppm-CO2 in the amended and unamended waste. The use of soil amendments in mine rehabilitation requires consideration of the trade-off between initial reductions in seedling recruitment and enhanced seedling development at later stages. Future rehabilitation should consider the timing of amendment application to avoid detrimental impacts on seedling recruitment and maximise the benefits to seedling growth.


Subject(s)
Soil Pollutants , Soil , Mining , Plants , Seedlings , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...