Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 30(3): 1315-1328, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34547460

ABSTRACT

All retina-based vision restoration approaches rely on the assumption that photoreceptor loss does not preclude reactivation of the remaining retinal architecture. Whether extended periods of vision loss limit the efficacy of restorative therapies at the retinal level is unknown. We examined long-term changes in optogenetic responsivity of foveal retinal ganglion cells (RGCs) in non-human primates following localized photoreceptor ablation by high-intensity laser exposure. By performing fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) of RGCs expressing both the calcium indicator GCaMP6s and the optogenetic actuator ChrimsonR, it was possible to track optogenetic-mediated calcium responses in deafferented RGCs over time. Fluorescence fundus photography revealed a 40% reduction in ChrimsonR fluorescence from RGCs lacking photoreceptor input over the 3 weeks following photoreceptor ablation. Despite this, in vivo imaging revealed good cellular preservation of RGCs 3 months after the loss of photoreceptor input, and histology confirmed good structural preservation at 2 years. Optogenetic responses of RGCs in primate persisted for at least 1 year after the loss of photoreceptor input, with a sensitivity index similar to optogenetic responses recorded in intact retina. These results are promising for all potential therapeutic approaches to vision restoration that rely on preservation and reactivation of RGCs.


Subject(s)
Calcium , Optogenetics , Animals , Optogenetics/methods , Photoreceptor Cells , Primates , Retina
2.
Nat Commun ; 11(1): 1703, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245977

ABSTRACT

Optogenetic therapies for vision restoration aim to confer intrinsic light sensitivity to retinal ganglion cells when photoreceptors have degenerated and light sensitivity has been irreversibly lost. We combine adaptive optics ophthalmoscopy with calcium imaging to optically record optogenetically restored retinal ganglion cell activity in the fovea of the living primate. Recording from the intact eye of a living animal, we compare the patterns of activity evoked by the optogenetic actuator ChrimsonR with natural photoreceptor mediated stimulation in the same retinal ganglion cells. Optogenetic responses are recorded more than one year following administration of the therapy and two weeks after acute loss of photoreceptor input in the living animal. This in vivo imaging approach could be paired with any therapy to minimize the number of primates required to evaluate restored activity on the retinal level, while maximizing translational benefit by using an appropriate pre-clinical model of the human visual system.


Subject(s)
Blindness/therapy , Optogenetics/methods , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/therapy , Retinal Ganglion Cells/physiology , Animals , Blindness/diagnosis , Blindness/etiology , Dependovirus , Disease Models, Animal , Female , Fovea Centralis/cytology , Fovea Centralis/diagnostic imaging , Fovea Centralis/pathology , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Macaca fascicularis , Male , Ophthalmoscopy , Optical Imaging , Parvovirinae/genetics , Retinal Degeneration/complications , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...