Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 29(6): 066003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745983

ABSTRACT

Significance: Necrotizing soft-tissue infections (NSTIs) are life-threatening infections with a cumulative case fatality rate of 21%. The initial presentation of an NSTI is non-specific, frequently leading to misdiagnosis and delays in care. No current strategies yield an accurate, real-time diagnosis of an NSTI. Aim: A first-in-kind, observational, clinical pilot study tested the hypothesis that measurable fluorescence signal voids occur in NSTI-affected tissues following intravenous administration and imaging of perfusion-based indocyanine green (ICG) fluorescence. This hypothesis is based on the established knowledge that NSTI is associated with local microvascular thrombosis. Approach: Adult patients presenting to the Emergency Department of a tertiary care medical center at high risk for NSTI were prospectively enrolled and imaged with a commercial fluorescence imager. Single-frame fluorescence snapshot and first-pass perfusion kinetic parameters-ingress slope (IS), time-to-peak (TTP) intensity, and maximum fluorescence intensity (IMAX)-were quantified using a dynamic contrast-enhanced fluorescence imaging technique. Clinical variables (comorbidities, blood laboratory values), fluorescence parameters, and fluorescence signal-to-background ratios (SBRs) were compared to final infection diagnosis. Results: Fourteen patients were enrolled and imaged (six NSTI, six cellulitis, one diabetes mellitus-associated gangrene, and one osteomyelitis). Clinical variables demonstrated no statistically significant differences between NSTI and non-NSTI patient groups (p-value≥0.22). All NSTI cases exhibited prominent fluorescence signal voids in affected tissues, including tissue features not visible to the naked eye. All cellulitis cases exhibited a hyperemic response with increased fluorescence and no distinct signal voids. Median lesion-to-background tissue SBRs based on snapshot, IS, TTP, and IMAX parameter maps ranged from 3.2 to 9.1, 2.2 to 33.8, 1.0 to 7.5, and 1.5 to 12.7, respectively, for the NSTI patient group. All fluorescence parameters except TTP demonstrated statistically significant differences between NSTI and cellulitis patient groups (p-value<0.05). Conclusions: Real-time, accurate discrimination of NSTIs compared with non-necrotizing infections may be possible with perfusion-based ICG fluorescence imaging.


Subject(s)
Indocyanine Green , Optical Imaging , Soft Tissue Infections , Humans , Indocyanine Green/chemistry , Female , Male , Soft Tissue Infections/diagnostic imaging , Middle Aged , Optical Imaging/methods , Pilot Projects , Aged , Prospective Studies , Adult , Necrosis/diagnostic imaging
2.
Article in English | MEDLINE | ID: mdl-37034555

ABSTRACT

Necrotizing soft-tissue infections (NSTIs) are aggressive and deadly. Immediate surgical debridement is standard-of-care, but patients often present with non-specific symptoms, thereby delaying treatment. Because NSTIs cause microvascular thrombosis, we hypothesized that perfusion imaging using indocyanine green (ICG) would show diminished fluorescence signal in NSTI-affected tissues, particularly compared to non-necrotizing, superficial infections. Through a first-in-kind clinical study, we performed first-pass ICG fluorescence perfusion imaging of patients with suspected NSTIs. Early results support our hypothesis that ICG signal voids occur in NSTI-affected tissues and that dynamic contrast-enhanced fluorescence parameters reveal tissue kinetics that may be related to disease progression and extent.

3.
Article in English | MEDLINE | ID: mdl-37034556

ABSTRACT

Indocyanine green (ICG)-based dynamic contrast-enhanced fluorescence imaging (DCE-FI) can objectively assess bone perfusion intraoperatively. However, it is susceptible to motion artifacts due to patient's involuntary respiration during the 4.5-minute DCE-FI data acquisition. An automated motion correction approach based on mutual information (MI) frameby-frame was developed to overcome this problem. In this approach, MIs were calculated between the reference and the adjacent frame translated and the maximal MI corresponded to the optimal translation. The images obtained from eighteen amputation cases were utilized to validate the approach and the results show that this correction can significantly reduce the motion artifacts and can improve the accuracy of bone perfusion assessment.

4.
Article in English | MEDLINE | ID: mdl-37009433

ABSTRACT

We have co-developed a first-in-kind model of fluorophore testing in freshly amputated human limbs. Ex vivo human tissue provides a unique opportunity for the testing of pre-clinical fluorescent agents, collection of imaging data, and histopathologic examination in human tissue prior to performing in vivo experiments. Existing pre-clinical fluorescent agent studies rely primarily on animal models, which do not directly predict fluorophore performance in humans and can result in wasted resources and time if an agent proves ineffective in early human trials. Because fluorophores have no desired therapeutic effect, their clinical utility is based solely on their safety and ability to highlight tissues of interest. Advancing to human trials even via the FDA's phase 0/microdose pathway still requires substantial resources, single-species pharmacokinetic testing, and toxicity testing. In a recently concluded study using amputated human lower limbs, we were able to test successfully a nerve-specific fluorophore in pre-clinical development. This study used systemic administration via vascular cannulization and a cardiac perfusion pump. We envision that this model may assist with early lead agent testing selection for fluorophores with various targets and mechanisms.

5.
J Biomed Opt ; 28(8): 082802, 2023 08.
Article in English | MEDLINE | ID: mdl-36619496

ABSTRACT

Significance: This first-in-kind, perfused, and amputated human limb model allows for the collection of human data in preclinical selection of lead fluorescent agents. The model facilitates more accurate selection and testing of fluorophores with human-specific physiology, such as differential uptake and signal in fat between animal and human models with zero risk to human patients. Preclinical testing using this approach may also allow for the determination of tissue toxicity, clearance time of fluorophores, and the production of harmful metabolites. Aim: This study was conducted to determine the fluorescence intensity values and tissue specificity of a preclinical, nerve tissue targeted fluorophore, as well as the capacity of this first-in-kind model to be used for lead fluorescent agent selection in the future. Approach: Freshly amputated human limbs were perfused for 30 min prior to in situ and ex vivo imaging of nerves with both open-field and closed-field commercial fluorescence imaging systems. Results: In situ, open-field imaging demonstrated a signal-to-background ratio (SBR) of 4.7 when comparing the nerve with adjacent muscle tissue. Closed-field imaging demonstrated an SBR of 3.8 when the nerve was compared with adipose tissue and 4.8 when the nerve was compared with muscle. Conclusions: This model demonstrates an opportunity for preclinical testing, evaluation, and selection of fluorophores for use in clinical trials as well as an opportunity to study peripheral pathologies in a controlled environment.


Subject(s)
Amputees , Fluorescent Dyes , Animals , Humans , Fluorescent Dyes/metabolism , Muscles , Extremities , Optical Imaging/methods
6.
Mol Imaging Biol ; 25(1): 46-57, 2023 02.
Article in English | MEDLINE | ID: mdl-36447084

ABSTRACT

Fluorescence-guided surgery (FGS) is an evolving field that seeks to identify important anatomic structures or physiologic phenomena with helpful relevance to the execution of surgical procedures. Fluorescence labeling occurs generally via the administration of fluorescent reporters that may be molecularly targeted, enzyme-activated, or untargeted, vascular probes. Fluorescence guidance has substantially changed care strategies in numerous surgical fields; however, investigation and adoption in orthopaedic surgery have lagged. FGS shows the potential for improving patient care in orthopaedics via several applications including disease diagnosis, perfusion-based tissue healing capacity assessment, infection/tumor eradication, and anatomic structure identification. This review highlights current and future applications of fluorescence guidance in orthopaedics and identifies key challenges to translation and potential solutions.


Subject(s)
Neoplasms , Orthopedic Procedures , Orthopedics , Surgery, Computer-Assisted , Humans , Fluorescence , Optical Imaging/methods , Surgery, Computer-Assisted/methods , Fluorescent Dyes
SELECTION OF CITATIONS
SEARCH DETAIL
...