Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18017, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289439

ABSTRACT

A field spray drift experiment using florpyrauxifen-benzyl was conducted to measure drift from commercial ground and aerial applications, evaluate soybean [Glycine max (L.) Merr.] impacts, and compare to United States Environmental Protection Agency (US EPA) drift models. Collected field data were consistent with US EPA model predictions. Generally, with both systems applying a Coarse spray in a 13-kph average wind speed, the aerial application had a 5.0- to 8.6-fold increase in drift compared to the ground application, and subsequently, a 1.7- to 3.6-fold increase in downwind soybean injury. Soybean reproductive structures were severely reduced following herbicide exposure, potentially negatively impacting pollinator foraging sources. Approximately a 25% reduction of reproductive structures up to 30.5-m downwind and nearly a 100% reduction at 61-m downwind were observed for ground and aerial applications, respectively. Aerial applications would require three to five swath width adjustments upwind to reduce drift potential similar to ground applications.


Subject(s)
Herbicides , Pesticides , United States , Environmental Monitoring , Wind , United States Environmental Protection Agency , Agriculture , Pesticides/analysis
2.
J Econ Entomol ; 115(5): 1693-1702, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36099406

ABSTRACT

Foliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate. Field observations in Tennessee suggest that the performance of acephate has declined. Thus, the first objective was to perform leaf-dip bioassays to assess if tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), in cotton production regions have evolved resistance to foliar-applied insecticides. A second objective was to assess the performance of commonly applied foliar insecticides for managing thrips in standardized field trials in Arkansas, Tennessee, Mississippi, and Texas. For both objectives, several insecticides were evaluated including acephate, dicrotophos, dimethoate, lambda-cyhalothrin, imidacloprid, and spinetoram. Field trials and bioassays were completed from 2018 to 2021. Dose-response bioassays with acephate were performed on tobacco thrips field populations and a susceptible laboratory population. Bioassay results suggest that tobacco thrips have developed resistance to acephate and other organophosphate insecticides; however, this resistance seems to be most severe in Arkansas, Tennessee, and the Delta region of Mississippi. Resistance to other classes of insecticides were perhaps even more evident in these bioassays. The performance of these insecticides in field trials was variable, with tobacco thrips only showing consistent signs of resistance to lambda-cyhalothrin. However, it is evident that many populations of tobacco thrips are resistant to multiple classes of insecticides. Further research is needed to determine heritability and resistance mechanism(s).


Subject(s)
Insecticides , Thysanoptera , Animals , Biological Assay , Dimethoate , Gossypium , Insecticides/pharmacology , Nitriles , Organothiophosphorus Compounds , Phosphoramides , Pyrethrins , Nicotiana , United States
3.
Insects ; 13(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055934

ABSTRACT

Helicoverpa armigera nucleopolyhedrovirus (HearNPV) is a naturally occurring virus commercially produced for control of Heliothines, including Helicoverpa zea. One drawback with using this virus for control has been the slower time to mortality compared with synthetic insecticides. However, a new formulation (Heligen®) has anecdotally been thought to result in quicker mortality than previously observed. The objective of this study was to evaluate percent defoliation, the efficacy of HearNPV on mortality for each H. zea larval instar, and the potential for control of a second infestation. Fourteen days after the first infestation, all plants were re-infested with a second instar larva to simulate a second infestation. Helicoverpa armigera nucleopolyhedrovirus was effective at killing 1st-3rd instars, resulting in 99% mortality over 4-6 days. However, 4th and 5th instar mortality only reached 35%. Second infestation larvae died between 3.4 and 3.8 days, significantly faster than the 1st infestation of 2nd instars, which had a mean time to mortality of 4.9 days. An increase in mortality rate is probably due to increasing viral concentrations after viral replication within the first hosts. Final defoliation percentages were significantly smaller in the treated plants versus the untreated plants. Only 3rd and 4th instar larvae caused percent defoliation to exceed the current Arkansas action threshold of 40%. Helicoverpa armigera nucleopolyhedrovirus in the Heligen formulation can control 1st-3rd instars within 4-6 days, while keeping defoliation below the action threshold of 40%.

4.
J Econ Entomol ; 112(3): 1098-1104, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30715431

ABSTRACT

Horizontal transmission of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been found to occur through several pathways involving abiotic factors such as soil, wind, and rain, and biotic factors such as predators, parasitoids, and infected hosts. Previous studies examining horizontal transmission through certain biological carriers speculated they were likely not significant in increasing infection rates, however; these studies only focused on a relatively small number of arthropods present within a field setting. This study was conducted to evaluate the horizontal transmission potential of HearNPV by all potential biological carriers when applied as a foliar bioinsecticide or as virus-infected, nonmotile Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) larvae in a soybean field. Soybean plots were either sprayed with HearNPV or infested with late-stage HearNPV-infected larvae, and sample zones were sampled 3, 7, 10, 14, 17, and 21 days after the infestation, and analyzed for viral presence using PCR. We then identified HearNPV carriers through contamination from the application (involuntary) or through contact with a HearNPV-infected larva (voluntary). Both were confirmed through PCR analysis. Regardless of application technique, on average, HearNPV was capable of disseminating up to 61.0 m in 3 d after inoculation and was found within the sampled canopy 13-21 d after inoculation. Several arthropods were identified as novel carriers of HearNPV. Results from this study indicate that many novel HearNPV carriers are likely important in disseminating HearNPV.


Subject(s)
Moths , Nucleopolyhedroviruses , Animals , Baculoviridae , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...