Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38747385

ABSTRACT

Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.


Subject(s)
Grassland , Microbiota , Seasons , Soil Microbiology , Soil , Soil/chemistry , Global Warming , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Carbon/metabolism , Carbon/analysis , Temperature
2.
Nat Commun ; 15(1): 1178, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331994

ABSTRACT

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.


Subject(s)
Ecosystem , Grassland , Soil , Carbon , Climate Change
3.
Nat Commun ; 13(1): 175, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013303

ABSTRACT

Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (rrn) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level rrn copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on rrn copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a "hunger games" hypothesis to define microbial species abundance rules using the rrn copy number, ecological interaction, and nutrient availability.


Subject(s)
Aquatic Organisms/genetics , Microbial Interactions/genetics , Microbiota/genetics , rRNA Operon , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Aquatic Organisms/metabolism , Ecosystem , Gene Dosage , Microbial Interactions/drug effects , Microbiota/drug effects , Nutrients/analysis , Nutrients/pharmacology , Seawater/microbiology
4.
ISME J ; 16(1): 10-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34211103

ABSTRACT

Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.


Subject(s)
Panicum , Soil , Carbon , Carbon Dioxide/analysis , Methane , Nitrous Oxide/analysis , Soil/chemistry
5.
mLife ; 1(4): 399-411, 2022 Dec.
Article in English | MEDLINE | ID: mdl-38818486

ABSTRACT

Higher biodiversity is often assumed to be a more desirable scenario for maintaining the functioning of ecosystems, but whether species-richer communities are also more disturbance-tolerant remains controversial. In this study, we investigated the bacterial communities based on 472 soil samples from 28 forests across China with associated edaphic and climatic properties. We developed two indexes (i.e., community mean tolerance breadth [CMTB] and community mean response asynchrony [CMRA]) to explore the relationship between diversity and community resistance potential. Moreover, we examined this resistance potential along the climatic and latitudinal gradients. We revealed that CMTB was significantly and negatively related to species richness, resulting from the changes in balance between relative abundances of putative specialists and generalists. In comparison, we found a unimodal relationship between CMRA and richness, suggesting that higher biodiversity might not always lead to higher community resistance. Moreover, our results showed differential local patterns along latitude. In particular, local patterns in the northern region mainly followed general relationships rather than those for the southern forests, which may be attributed to the differences in annual means and annual variations of climate conditions. Our findings highlight that the community resistance potential depends on the composition of diverse species with differential environmental tolerance and responses. This study provides a new, testable evaluation by considering tolerance breadth and response asynchrony at the community level, which will be helpful in assessing the influence of disturbance under rapid shifts in biodiversity and species composition as a result of global environmental change.

6.
Glob Chang Biol ; 27(22): 5963-5975, 2021 11.
Article in English | MEDLINE | ID: mdl-34403163

ABSTRACT

Understanding the influences of global climate change on soil microbial communities is essential in evaluating the terrestrial biosphere's feedback to this alarming anthropogenic disturbance. However, little is known about how intra-site historical climate variability can mediate the influences of current climate differences on community dissimilarity and assembly. To fill this gap, we examined and disentangled the interactive effects of historical climate variability and current climate differences on the soil bacterial community dissimilarity and stochasticity of community assembly among 143 sites from 28 forests across eastern China. We hypothesize that the relative importance of stochasticity and community dissimilarity are related to historical climate variability and that an increasing sum of intra-site historical variability enhances stochasticity while reduces dissimilarity between two communities. To test our hypothesis, we statistically controlled for covariates between sites including differences in soil chemistry, plant diversity, spatial distance, and seasonal climate variations at annual timescales. We observed that an increase in inter-site current climate differences led to a reduced impact of stochasticity in community assembly and a pronounced divergence between communities. In stark contrast, when communities were subjected to a high level of intra-site historical climate fluctuation, the observed impact incurred from current climate differences was substantially weakened. Moreover, the influence of increased historical variability was consistent along the gradient of current temperature differences between sites. However, effects induced by historical fluctuation in precipitation were disproportional and only evident when small inter-site differences were observed. Consequently, if the prior climate variability is ignored, especially regarding environmental factors like temperature, we assert that the influence current climate differentiation has on regulating community dissimilarity and assembly stochasticity will be underestimated. Together, our findings highlight the importance and need of explicitly controlling the mean and the historical variability of climate factors for the next "generation" of climate change experiments to come.


Subject(s)
Microbiota , Soil Microbiology , Bacteria , Forests , Soil
7.
ISME Commun ; 1(1): 65, 2021 Nov 06.
Article in English | MEDLINE | ID: mdl-36755184

ABSTRACT

Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, "generalist" pathogens are likely segregated, while hosting more abundant unique, "specialist" ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal "fingerprinting" into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.

8.
Sci Total Environ ; 758: 143712, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33277004

ABSTRACT

Interspecies interaction is an essential mechanism for bacterial communities to develop antibiotic resistance via horizontal gene transfer. Nonetheless, how bacterial interactions vary along the environmental transmission of antibiotics and the underpinnings remain unclear. To address it, we explore potential microbial associations by analyzing bacterial networks generated from 16S rRNA gene sequences and functional networks containing a large number of antibiotic-resistance genes (ARGs). Antibiotic concentration decreased by more than 4000-fold along the environmental transmission chain from manure samples of swine farms to aerobic compost, compost-amended agricultural soils, and neighboring agricultural soils. Both bacterial and functional networks became larger in nodes and links with decreasing antibiotic concentrations, likely resulting from lower antibiotics stress. Nonetheless, bacterial networks became less clustered with decreasing antibiotic concentrations, while functional networks became more clustered. Modularity, a key topological property that enhances system resilience to antibiotic stress, remained high for functional networks, but the modularity values of bacterial networks were the lowest when antibiotic concentrations were intermediate. To explain it, we identified a clear shift from deterministic processes, particularly variable selection, to stochastic processes at intermediate antibiotic concentrations as the dominant mechanism in shaping bacterial communities. Collectively, our results revealed microbial network dynamics and suggest that the modularity value of association networks could serve as an important indicator of antibiotic concentrations in the environment.


Subject(s)
Anti-Bacterial Agents , Composting , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Manure , RNA, Ribosomal, 16S , Soil , Soil Microbiology , Swine
9.
Microbiome ; 8(1): 84, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503635

ABSTRACT

BACKGROUND: In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. RESULTS: The ß-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. CONCLUSIONS: Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract.


Subject(s)
Lignin , Proteobacteria , Soil Microbiology , Alaska , Burkholderia/metabolism , Climate Change , Hot Temperature , Lignin/metabolism , Permafrost , Proteobacteria/metabolism , Soil/chemistry , Tundra
10.
Clin Exp Optom ; 103(3): 368-375, 2020 05.
Article in English | MEDLINE | ID: mdl-31297876

ABSTRACT

BACKGROUND: The enactment of the Opticians Act by the Victorian parliament on 17 December 1935 transformed the standard of optometric practice in Victoria and laid the foundations for future educational advance. Previously any person could practise optometry in Victoria regardless of their qualifications or training. The Act established an Opticians Registration Board the first task of which was to register optometrists deemed competent enough to practise on the basis of their prior experience or their optometric qualifications. METHODS: This article uses the working papers of the Registration Board at the time to construct a profile of the optometrists in practice in 1936 including the number of optometrists in practice at the time, their qualifications, the extent of their prior experience, their conjoined businesses and their geographic location. RESULTS: There were 489 optometrists in practice who applied for registration in 1936 of whom 338 were subsequently registered, two-thirds on the basis of prior experience and one-third because they held an optometric qualification recognised under the Act. Eleven of them were women. Sixty-one per cent of them were solely engaged in the practice of optometry and 39 per cent practised in conjunction with another occupation, the most common of which were watchmaker, jeweller and pharmacist. Thirty-eight per cent practised in the central business district of Melbourne, 37 per cent in Melbourne suburbs and 25 per cent in regional Victoria. In 1937 the ratio of registered optometrists to population was 1:5,482. CONCLUSION: The Opticians Act of 1935 immediately lifted the competence of optometrists in practice in 1936 by refusing to register 31 per cent of those in practice who were judged to lack the necessary competence, and laid the foundations for higher educational standards in the future.


Subject(s)
Health Services Needs and Demand/organization & administration , Health Workforce/organization & administration , Optometrists/supply & distribution , Optometry/education , Humans , Optometrists/education , Surveys and Questionnaires , Victoria
11.
J Chem Phys ; 120(15): 6912-21, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15267589

ABSTRACT

A force field model is developed for C(60) that features 13 force constants representing all interactions between nearest-neighboring atoms. The model is compared with, and tested against, other force field models in the literature. Force constants for C(60) are then deduced by fitting the model to the 14 known optically accessible vibrational frequencies of the molecule. Finally, the model is fitted to two existing theoretical calculations of the complete vibrational spectrum of C(60). Fair agreement is obtained with the theoretical calculations, implying that interactions with atoms other than nearest neighbors are small.

SELECTION OF CITATIONS
SEARCH DETAIL
...