Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Pain Res ; 17: 293-304, 2024.
Article in English | MEDLINE | ID: mdl-38274409

ABSTRACT

Purpose: Spinal cord stimulation (SCS) is a highly effective treatment for chronic neuropathic pain. Despite recent advances in technology, treatment gaps remain. A small SCS system with a miniaturized implantable pulse generator (micro-IPG; <1.5 cm3 in volume) and an externally worn power source may be preferred by patients who do not want a large, implanted battery. We report here the long-term outcomes from the first-in-human study evaluating the safety and performance of a new neurostimulation system. Patients and Methods: This was a prospective, multi-center, open-label, single-arm study to evaluate this SCS system, in the treatment of chronic, intractable leg and low-back pain. Consented subjects who passed screening continued on to the long-term phase of the study. One-year, patient-reported outcomes (PRO's) such as pain (Numeric Rating Scale, NRS), functional disability, quality of life, and mood were captured. Results: Twenty-six (26) evaluable subjects with permanent implants were included in this analysis. The average leg pain NRS score decreased from 6.8 ± 1.2 at baseline to 1.1 ± 1.2 at the end of the study (p < 0.001), while the average low-back pain NRS score decreased from 6.8 ± 1.2 to 1.5 ± 1.2 (p < 0.001). The responder rate (proportion with ≥50% pain relief) was 91% in the leg(s) and 82% in the low back. There were significant improvements in functional disability (Oswestry Disability Index) and in mood (Beck Depression Inventory), demonstrating a 46% and 62% improvement, respectively (p < 0.001). Eleven-point Likert scales demonstrated the wearable to be very comfortable and very easy to use. Conclusion: There were considerable challenges conducting a clinical study during the COVID-19 pandemic, such as missed study programming visits. Nevertheless, subjects had significant PRO improvements through 1-year. The small size of the implanted device, along with a proprietary waveform, may allow for improved SCS outcomes and a drop in incidence of IPG-pocket pain.

2.
Dev Psychol ; 60(2): 306-321, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38190216

ABSTRACT

Many developmental theories have not been sufficiently evaluated using designs that control for unobserved familial confounds. Our long-term goal is to determine the causal structure underlying associations between early environmental conditions and later psychosocial and health outcomes. Our overall objective in this study was to further evaluate predictions derived from applications of life history theory to female reproductive development, key among them that reproductive milestones translate early environmental risk into fertility, health, and behavioral outcomes. To this end, we used female data from the National Longitudinal Survey of Youth 1979 and structural equation modeling to conduct increasingly severe tests, beginning with covariate control and then progressing to sibling control and behavioral genetic designs. After adjusting for confounds varying between sets of siblings, we did not find evidence that age at menarche reflected components of early environment or that any focal outcomes reflected early fragmented family structure (birth to age nine). Although we detected no links between measured environment and individual differences in age at sexual debut, we did find that it reflected both shared and nonshared influences in our behavior genetic models. Interestingly, delayed sexual debut (into young adulthood) reflected identification of parents as the greatest influences and forecasted an array of fertility-related outcomes. Taken together, these findings challenge theories suggesting menarche timing is adaptively calibrated to early environment. They also highlight the need for more research using sibling control and related designs to examine the roles of environments in development. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Menarche , Sexual Behavior , Adolescent , Humans , Female , Young Adult , Adult , Menarche/genetics , Parents , Longitudinal Studies , Siblings
3.
Clin Infect Dis ; 75(1): e536-e544, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35412591

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. METHODS: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. RESULTS: In total, 58 848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95% confidence interval [CI] 2.40-4.26), Beta (HR 2.85, 95% CI 1.56-5.23), Delta (HR 2.28 95% CI 1.56-3.34), or Alpha (HR 1.64, 95% CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95% CI .56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSIONS: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2/genetics , Washington/epidemiology
4.
medRxiv ; 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34729567

ABSTRACT

BACKGROUND: The COVID-19 pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with seven SARS-CoV-2 variants. METHODS: Our study includes individuals with positive SARS-CoV-2 RT-PCR in the Washington Disease Reporting System with available viral genome data, from December 1, 2020 to January 14, 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. FINDINGS: 58,848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95%CI 2.40-4.26), Beta (HR 2.85, 95%CI 1.56-5.23), Delta (HR 2.28 95%CI 1.56-3.34) or Alpha (HR 1.64, 95%CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95%CI 0.56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSION: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance. SUMMARY: Hospitalization risk following infection with SARS-CoV-2 variant remains unclear. We find a higher hospitalization risk in cases infected with Alpha, Beta, Gamma, and Delta, but not Omicron, with vaccination lowering risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.

5.
Nature ; 584(7820): 244-251, 2020 08.
Article in English | MEDLINE | ID: mdl-32728217

ABSTRACT

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA1-5 and contain genetic variations associated with diseases and phenotypic traits6-8. We created high-resolution maps of DHSs from 733 human biosamples encompassing 438 cell and tissue types and states, and integrated these to delineate and numerically index approximately 3.6 million DHSs within the human genome sequence, providing a common coordinate system for regulatory DNA. Here we show that these maps highly resolve the cis-regulatory compartment of the human genome, which encodes unexpectedly diverse cell- and tissue-selective regulatory programs at very high density. These programs can be captured comprehensively by a simple vocabulary that enables the assignment to each DHS of a regulatory barcode that encapsulates its tissue manifestations, and global annotation of protein-coding and non-coding RNA genes in a manner orthogonal to gene expression. Finally, we show that sharply resolved DHSs markedly enhance the genetic association and heritability signals of diseases and traits. Rather than being confined to a small number of distal elements or promoters, we find that genetic signals converge on congruently regulated sets of DHSs that decorate entire gene bodies. Together, our results create a universal, extensible coordinate system and vocabulary for human regulatory DNA marked by DHSs, and provide a new global perspective on the architecture of human gene regulation.


Subject(s)
Chromatin/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Molecular Sequence Annotation , Chromatin/chemistry , Chromatin/metabolism , DNA/chemistry , DNA/genetics , Gene Expression Regulation , Genes/genetics , Genome, Human/genetics , Humans , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics
6.
Nature ; 583(7818): 729-736, 2020 07.
Article in English | MEDLINE | ID: mdl-32728250

ABSTRACT

Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all organisms. Genetic variation in regulatory regions has been connected with diseases and diverse phenotypic traits1, but it remains challenging to distinguish variants that affect regulatory function2. Genomic DNase I footprinting enables the quantitative, nucleotide-resolution delineation of sites of transcription factor occupancy within native chromatin3-6. However, only a small fraction of such sites have been precisely resolved on the human genome sequence6. Here, to enable comprehensive mapping of transcription factor footprints, we produced high-density DNase I cleavage maps from 243 human cell and tissue types and states and integrated these data to delineate about 4.5 million compact genomic elements that encode transcription factor occupancy at nucleotide resolution. We map the fine-scale structure within about 1.6 million DNase I-hypersensitive sites and show that the overwhelming majority are populated by well-spaced sites of single transcription factor-DNA interaction. Cell-context-dependent cis-regulation is chiefly executed by wholesale modulation of accessibility at regulatory DNA rather than by differential transcription factor occupancy within accessible elements. We also show that the enrichment of genetic variants associated with diseases or phenotypic traits in regulatory regions1,7 is almost entirely attributable to variants within footprints, and that functional variants that affect transcription factor occupancy are nearly evenly partitioned between loss- and gain-of-function alleles. Unexpectedly, we find increased density of human genetic variation within transcription factor footprints, revealing an unappreciated driver of cis-regulatory evolution. Our results provide a framework for both global and nucleotide-precision analyses of gene regulatory mechanisms and functional genetic variation.


Subject(s)
DNA Footprinting/standards , Genome, Human/genetics , Transcription Factors/metabolism , Consensus Sequence , DNA/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Genetics, Population , Genome-Wide Association Study , Humans , Models, Molecular , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid/genetics
8.
PLoS Comput Biol ; 16(5): e1007573, 2020 05.
Article in English | MEDLINE | ID: mdl-32365103

ABSTRACT

Biological systems are acknowledged to be robust to perturbations but a rigorous understanding of this has been elusive. In a mathematical model, perturbations often exert their effect through parameters, so sizes and shapes of parametric regions offer an integrated global estimate of robustness. Here, we explore this "parameter geography" for bistability in post-translational modification (PTM) systems. We use the previously developed "linear framework" for timescale separation to describe the steady-states of a two-site PTM system as the solutions of two polynomial equations in two variables, with eight non-dimensional parameters. Importantly, this approach allows us to accommodate enzyme mechanisms of arbitrary complexity beyond the conventional Michaelis-Menten scheme, which unrealistically forbids product rebinding. We further use the numerical algebraic geometry tools Bertini, Paramotopy, and alphaCertified to statistically assess the solutions to these equations at ∼109 parameter points in total. Subject to sampling limitations, we find no bistability when substrate amount is below a threshold relative to enzyme amounts. As substrate increases, the bistable region acquires 8-dimensional volume which increases in an apparently monotonic and sigmoidal manner towards saturation. The region remains connected but not convex, albeit with a high visibility ratio. Surprisingly, the saturating bistable region occupies a much smaller proportion of the sampling domain under mechanistic assumptions more realistic than the Michaelis-Menten scheme. We find that bistability is compromised by product rebinding and that unrealistic assumptions on enzyme mechanisms have obscured its parametric rarity. The apparent monotonic increase in volume of the bistable region remains perplexing because the region itself does not grow monotonically: parameter points can move back and forth between monostability and bistability. We suggest mathematical conjectures and questions arising from these findings. Advances in theory and software now permit insights into parameter geography to be uncovered by high-dimensional, data-centric analysis.


Subject(s)
Computational Biology/methods , Protein Processing, Post-Translational/physiology , Algorithms , Gene Expression/genetics , Gene Expression/physiology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Models, Biological , Models, Theoretical , Protein Processing, Post-Translational/genetics
9.
Cell Rep ; 31(8): 107676, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460018

ABSTRACT

The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA Helicases/metabolism , DNA/genetics , Gene Expression/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Humans
10.
PLoS One ; 14(12): e0226299, 2019.
Article in English | MEDLINE | ID: mdl-31834904

ABSTRACT

A common problem when analyzing models, such as mathematical modeling of a biological process, is to determine if the unknown parameters of the model can be determined from given input-output data. Identifiable models are models such that the unknown parameters can be determined to have a finite number of values given input-output data. The total number of such values over the complex numbers is called the identifiability degree of the model. Unidentifiable models are models such that the unknown parameters can have an infinite number of values given input-output data. For unidentifiable models, a set of identifiable functions of the parameters are sought so that the model can be reparametrized in terms of these functions yielding an identifiable model. In this work, we use numerical algebraic geometry to determine if a model given by polynomial or rational ordinary differential equations is identifiable or unidentifiable. For identifiable models, we present a novel approach to compute the identifiability degree. For unidentifiable models, we present a novel numerical differential algebra technique aimed at computing a set of algebraically independent identifiable functions. Several examples are used to demonstrate the new techniques.


Subject(s)
Algorithms , Computer Simulation , Models, Biological , Numerical Analysis, Computer-Assisted , Humans
11.
Pain Med ; 20(Suppl 1): S41-S46, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31152174

ABSTRACT

OBJECTIVE: The objective of this study is to review the available evidence for dorsal root ganglion (DRG) stimulation for the treatment of complex regional pain syndrome type II (CRPS II; peripheral causalgia) associated with chronic neuropathic postsurgical pain (NPP). DESIGN: Available literature was identified through a search of the US National Library of Medicine's Medline database, PubMed.gov. References from published articles also were reviewed for relevant citations. RESULTS: The data published to date support the use of DRG stimulation to treat chronic NPP of the groin, knee, and foot. NPP following procedures such as thoracotomy, hernia surgery, and knee replacement surgery were identified as some of the conditions for which DRG stimulation is likely to be effective. CONCLUSION: DRG stimulation is known to be an effective treatment for focal neuropathic pain. Currently, NPP of the foot, groin, and knee all appear to be the conditions with the most clinical experience, backed by a limited but growing body of evidence. However, prospective studies lag behind real-world clinical experience and are needed to confirm these findings.


Subject(s)
Causalgia/therapy , Electric Stimulation Therapy/methods , Ganglia, Spinal/physiology , Pain Management/methods , Pain, Postoperative/therapy , Chronic Pain/therapy , Humans , Neuralgia/therapy
12.
Pain Med ; 20(Suppl 1): S2-S12, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31152178

ABSTRACT

BACKGROUND: The objective of this review was to merge current treatment guidelines and best practice recommendations for management of neuropathic pain into a comprehensive algorithm for primary physicians. The algorithm covers assessment, multidisciplinary conservative care, nonopioid pharmacological management, interventional therapies, neurostimulation, low-dose opioid treatment, and targeted drug delivery therapy. METHODS: Available literature was identified through a search of the US National Library of Medicine's Medline database, PubMed.gov. References from identified published articles also were reviewed for relevant citations. RESULTS: The algorithm provides a comprehensive treatment pathway from assessment to the provision of first- through sixth-line therapies for primary care physicians. Clear indicators for progression of therapy from firstline to sixth-line are provided. Multidisciplinary conservative care and nonopioid medications (tricyclic antidepressants, serotonin norepinephrine reuptake inhibitors, gabapentanoids, topicals, and transdermal substances) are recommended as firstline therapy; combination therapy (firstline medications) and tramadol and tapentadol are recommended as secondline; serotonin-specific reuptake inhibitors/anticonvulsants/NMDA antagonists and interventional therapies as third-line; neurostimulation as a fourth-line treatment; low-dose opioids (no greater than 90 morphine equivalent units) are fifth-line; and finally, targeted drug delivery is the last-line therapy for patients with refractory pain. CONCLUSIONS: The presented treatment algorithm provides clear-cut tools for the assessment and treatment of neuropathic pain based on international guidelines, published data, and best practice recommendations. It defines the benefits and limitations of the current treatments at our disposal. Additionally, it provides an easy-to-follow visual guide of the recommended steps in the algorithm for primary care and family practitioners to utilize.


Subject(s)
Algorithms , Neuralgia/therapy , Pain Management/methods , Humans
13.
EBioMedicine ; 41: 427-442, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30827930

ABSTRACT

BACKGROUND: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.


Subject(s)
Endogenous Retroviruses/genetics , Epigenomics , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding Sites , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cytochrome Reductases/genetics , Endogenous Retroviruses/physiology , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oxidoreductases Acting on Sulfur Group Donors , Phosphoric Diester Hydrolases/genetics , Promoter Regions, Genetic , Proteins/genetics , Pyrophosphatases/genetics , RNA, Long Noncoding , Survival Rate , Terminal Repeat Sequences/genetics , Ubiquitin-Conjugating Enzymes/genetics
14.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30760496

ABSTRACT

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

15.
J R Soc Interface ; 13(123)2016 10.
Article in English | MEDLINE | ID: mdl-27733697

ABSTRACT

Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.


Subject(s)
Models, Biological
16.
Sports Health ; 7(1): 27-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25553210

ABSTRACT

CONTEXT: Articular cartilage possesses poor natural healing mechanisms, and a variety of non-cell-based and cell-based treatments aim to promote regeneration of hyaline cartilage. DATA SOURCES: A review of the literature to December 2013 using PubMed with search criteria including the keywords stem cell, cell therapy, cell transplantation, cartilage, chondral, and chondrogenic. STUDY SELECTION: Forty-five articles were identified that employed local mesenchymal stem cell (MSC) therapy for joint disorders in humans. Nine comparative studies were identified, consisting of 3 randomized trials, 5 cohort studies, and 1 case-control study. STUDY TYPE: Clinical review. LEVEL OF EVIDENCE: Level 4. DATA EXTRACTION: Studies were assessed for stem cell source, method of implantation, comparison groups, and concurrent surgical techniques. RESULTS: Two studies comparing MSC treatment to autologous chondrocyte implantation found similar efficacy. Three studies reported clinical benefits with intra-articular MSC injection over non-MSC controls for cases undergoing debridement with or without marrow stimulation, although a randomized study found no significant clinical difference at 2-year follow-up but reported better 18-month magnetic resonance imaging and histologic scores in the MSC group. No human studies have compared intra-articular MSC therapy to non-MSC techniques for osteoarthritis in the absence of surgery. CONCLUSION: Mesenchymal stem cell-based therapies appear safe and effective for joint disorders in large animal preclinical models. Evidence for use in humans, particularly, comparison with more established treatments such as autologous chondrocyte implantation and microfracture, is limited.

17.
Nature ; 515(7527): 365-70, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409825

ABSTRACT

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Mammals/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , DNA Footprinting , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Humans , Mice
18.
Science ; 346(6212): 1007-12, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25411453

ABSTRACT

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.


Subject(s)
Conserved Sequence , DNA/genetics , Evolution, Molecular , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Deoxyribonuclease I , Genome, Human , Humans , Mice , Restriction Mapping
19.
Am J Sports Med ; 42(1): 138-43, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24280307

ABSTRACT

BACKGROUND: A ligamentum teres (LT) injury is a common finding at the time of hip arthroscopic surgery in patients with chronic groin and hip pain; however, LT tears have been difficult to identify before surgery. There have been no unique features identified on history assessment, physical examination, or imaging that reliably identify injuries of the LT preoperatively. PURPOSE: To report a new clinical examination to assess the presence of an LT tear: the LT test. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 2. METHODS: The study consisted of 75 patients undergoing hip arthroscopic surgery for multiple lesions. Each patient was evaluated by 2 independent examiners using the LT test, leading to a total of 150 tests being performed. The LT test is conducted with the hip flexed at 70° and 30° short of full abduction; the hip is then internally and externally rotated to its limits of motion. Pain on either internal or external rotation is consistent with a positive LT test result. Hip arthroscopic surgery was then performed and all intra-articular abnormalities noted. Arthroscopic images were taken of each LT and examined by a third independent examiner who determined the presence or absence of a tear. Clinical examination findings were compared with the arthroscopic findings to determine the sensitivity, specificity, and positive and negative predictive values. In addition, the presence of intra-articular pathological lesions was compared with the test results to determine if there was a correlation between the presence of an intra-articular pathological abnormality and a positive LT test result. RESULTS: Of the 150 examinations performed, the test result was positive 55% of the time (77 examinations). The sensitivity and specificity of the test were 90% and 85%, respectively. The positive predictive value was 84%, and the negative predictive value was 91%. The presence of an LT tear, pincer lesion, and labral tear that required repair was associated with a positive LT test result. The κ coefficient for interobserver reliability was .80. CONCLUSION: The LT test is an effective way of assessing the presence of LT tears with moderate to high interobserver reliability. In addition to an LT tear, the presence of a pincer lesion or labral tear requiring repair are also associated with a positive LT test result.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroscopy , Ligaments, Articular/injuries , Physical Examination/methods , Adolescent , Adult , Female , Humans , Male , Middle Aged , Range of Motion, Articular/physiology , Reproducibility of Results , Rotation , Rupture/diagnosis , Rupture/physiopathology , Sensitivity and Specificity , Video Recording
20.
Atten Percept Psychophys ; 75(8): 1748-60, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23925584

ABSTRACT

When a new visual object appears, attention is directed toward it. However, some locations along the outline of the new object may receive more resources, perhaps as a consequence of their relative importance in describing its shape. Evidence suggests that corners receive enhanced processing, relative to the straight edges of an outline (corner enhancement effect). Using a technique similar to that in an original study in which observers had to respond to a probe presented near a contour (Cole et al. in Journal of Experimental Psychology: Human Perception and Performance 27:1356-1368, 2001), we confirmed this effect. When figure-ground relations were manipulated using shaded surfaces (Exps. 1 and 2) and stereograms (Exps. 3 and 4), two novel aspects of the phenomenon emerged: We found no difference between corners perceived as being convex or concave, and we found that the enhancement was stronger when the probe was perceived as being a feature of the surface that the corner belonged to. Therefore, the enhancement is not based on spatial aspects of the regions in the image, but critically depends on figure-ground stratification, supporting the link between the prioritization of corners and the representation of surface layout.


Subject(s)
Attention/physiology , Discrimination, Psychological/physiology , Fixation, Ocular/physiology , Form Perception/physiology , Pattern Recognition, Visual , Space Perception/physiology , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...