Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanophotonics ; 13(14): 2453-2467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836102

ABSTRACT

We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.

2.
Nano Lett ; 20(11): 7980-7986, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33047599

ABSTRACT

Stimuli-responsive molecular junctions, where the conductance can be altered by an external perturbation, are an important class of nanoelectronic devices. These have recently attracted interest as large effects can be introduced through exploitation of quantum phenomena. We show here that significant changes in conductance can be attained as a molecule is repeatedly compressed and relaxed, resulting in molecular folding along a flexible fragment and cycling between an anti and a syn conformation. Power spectral density analysis and DFT transport calculations show that through-space tunneling between two phenyl fragments is responsible for the conductance increase as the molecule is mechanically folded to the syn conformation. This phenomenon represents a novel class of mechanoresistive molecular devices, where the functional moiety is embedded in the conductive backbone and exploits intramolecular nonbonding interactions, in contrast to most studies where mechanoresistivity arises from changes in the molecule-electrode interface.

3.
Inorg Chem ; 58(1): 419-427, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30570252

ABSTRACT

The N-methyl-4-phenyl-pyridine-bridged bisdithiazolyl radical PhBPMe is polymorphic, crystallizing from cold acetonitrile in a trigonal α-phase, space group P3121, and from hot dichloroethane in an orthorhombic ß-phase, space group Pca21. The crystal structures of both phases consist of slipped π-stacks of undimerized radicals aligned laterally into herringbone arrays. In the ß-phase, there are two independent radicals in the asymmetric unit, and the resulting π-stacks form corrugated layers interspersed by methyl and phenyl groups which block the approach of neighboring radicals. In the α-phase, the methyl/phenyl groups and the radical π-stacks separately form spirals about 31 axes, the latter giving rise to a 3D network of close radical/radical contacts. Variable temperature magnetic susceptibility measurements on the ß-phase indicate strong antiferromagnetic coupling. Weaker but predominantly antiferromagnetic interactions (θ = -20.7 K) are observed in the α-phase. A high temperature series expansion analysis of the magnetic data for the α-phase affords antiferromagnetic exchange energies for the one- and two-step radical/radical interactions about the 31 spirals ( J1 = -1.2 K, J2 = -10.9 K, respectively), with weak ferromagnetic interactions along the π-stacks ( Jπ = +1.8 K). Despite the presence of a 3D network based on the dominant J2 interactions, which affords two independent bipartite sublattices, no evidence of bulk antiferromagnetic order has been observed above T = 2 K. The magnetic results are discussed in light of exchange energies calculated using density functional theory broken symmetry methods.

4.
J Am Chem Soc ; 140(11): 3846-3849, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29513996

ABSTRACT

Crystals of the heterocyclic radical naphtho-1,3,2-dithiazolyl NDTA display magnetic bistability with a well-defined hysteretic phase transition at Tc↓ = 128(2) K and Tc↑ = 188(2) K. The magnetic signature arises from a radical/dimer interconversion involving one of the two independent π-radicals in the P1̅ unit cell. Variable temperature X-ray crystallography has established that while all the radicals in HT-NDTA serve as paramagnetic ( S = 1/2) centers, half of the radicals in LT-NDTA form closed-shell N-N σ-bonded dimers ( S = 0) and half retain their S = 1/2 spin state. The wide window of bistability (60 K) may be attributed to the large structural changes that accompany the phase transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...