Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Histochem Cytochem ; 51(6): 715-26, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12754283

ABSTRACT

Metastatic processes, including cell invasion, extracellular matrix degradation, and tissue remodeling, require cellular reorganization and proliferation. The cell signaling molecules required and the proteins involved in cell restructuring have not been completely elucidated. We have been studying the role of sphingolipids in normal cell activity and in several pathophysiological states. In this study we used immunohistochemistry to observe the presence of the two known subunits of serine palmitoyltransferase (SPT) in proliferating cells, in an in vitro model of wound repair, and in human malignant tissue. We report increased expression of the two subunits, SPT1 and SPT2, in the proliferating cells in these models. We also demonstrate a change in subcellular localization of the SPT subunits from predominantly cytosolic in quiescent cells to nuclear in proliferating cells. In addition, we observed SPT1 and SPT2 immunoreactivity in reactive stromal fibroblasts surrounding the carcinoma cells of some of the tumors. This enhanced SPT expression was absent in the stromal fibroblasts surrounding normal epithelial cells. Our results suggest a potential role for overexpression of SPT in the processes of cell metastasis.


Subject(s)
Acyltransferases/metabolism , Fibroblasts/metabolism , Neoplasms/metabolism , Cell Division , Cell Line, Transformed , Humans , Immunohistochemistry/methods , Infant, Newborn , Protein Subunits , Serine C-Palmitoyltransferase
2.
J Histochem Cytochem ; 51(5): 687-96, 2003 May.
Article in English | MEDLINE | ID: mdl-12704216

ABSTRACT

Sphingolipids serve as structural elements of cells and as lipid second messengers. They regulate cellular homeostasis, mitogenesis, and apoptosis. Sphingolipid signaling may also be important in various pathophysiologies such as vascular injury, inflammation, and cancer. Serine palmitoyltransferase (SPT) catalyzes the condensation of serine with palmitoyl-CoA, the first, rate-limiting step in de novo sphingolipid biosynthesis. This integral microsomal membrane protein consists of at least two subunits, SPT1 and SPT2. In this study we analyzed the expression of SPT1 and SPT2 in normal human tissues. Strong SPT1 and SPT2 expression was observed in pyramidal neurons in the brain, in colon epithelium, and in mucosal macrophages. However, SPT2 expression was more prominent than SPT1 in the colon mucosal macrophages, the adrenomedullary chromaffin cells and endothelium, and in the uterine endothelium. SPT2 was localized in both nuclei and cytoplasm of the adrenomedullary chromaffin cells, whereas SPT1 was primarily cytoplasmic. These observations link enhanced SPT expression to proliferating cells, such as the lung, stomach, intestinal epithelium, and renal proximal tubular epithelium, and to potentially activated cells such as neurons, chromaffin cells, and mucosal macrophages. A baseline expression of SPT, established by this study, may serve as a measure for aberrant expression in various disease states.


Subject(s)
Acyltransferases/metabolism , Acyltransferases/immunology , Antibody Specificity , Humans , Immunohistochemistry , Organ Specificity , Protein Subunits , Serine C-Palmitoyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...