Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(44): 18069-18078, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37862703

ABSTRACT

Eutectic mixtures of choline chloride, urea, and water in deep eutectic solvent (DES)/water molar hydration ratios (w) of 2, 5, and 10, with dissolved cerium salt, were measured using neutron diffraction with isotopic substitution. Structures were modeled using empirical potential structure refinement (EPSR). Ce3+ was found to form highly charged complexes with a mean coordination number between 7 and 8, with the shell containing mostly chloride, followed by water. The shell composition is strongly affected by the molar ratio of dilution, as opposed to the mass or volume fraction, due to the high affinity of Cl- and H2O ligands that displace less favorable interactions with ligands such as urea and choline. The presence of Ce3+ salt disrupted the bulk DES structure slightly, making it more electrolyte-like. The measured coordination shell of choline showed significant discrepancies from the statistical noninteracting distribution, highlighting the nonideality of the blend. Cluster analysis revealed the trace presence of percolating water clusters (25 ≥ n ≥ 2) in solvent compositions of 5 and 10w for the first time.

2.
Macromolecules ; 55(24): 11051-11058, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36590371

ABSTRACT

Small-angle neutron scattering (SANS) experiments were conducted on cyclic and linear polymers of racemic and l-lactides (PLA) with the goal of comparing chain configurations, scaling, and effective polymer-solvent interactions of the two topologies in acetone-d 6 and THF-d 8. There are limited reports of SANS results on cyclic polymers due to the lack of substantial development in the field until recently. Now that pure, well-defined cyclic polymers are accessible, unanswered questions about their rheology and physical conformations can be better investigated. Previously reported SANS experiments have used cyclic and linear polystyrene samples; therefore, our work allowed for direct comparison using a contrasting (structurally and sterically) polymer. We compared SANS results of cyclic and linear PLA samples with various microstructures and molecular weights at two different temperatures, allowing for comparison with a wide range of variables. The results followed the trends of previous experiments, but much greater differences in the effective polymer-solvent interaction parameters between cyclic and linear forms of PLA were observed, implying that the small form factor and hydrogen bonding in PLA allowed for much more compact conformations in the cyclic form only. Also, the polymer microstructure was found to influence polymer-solvent interaction parameters substantially. These results illustrate how the difference in polymer-solvent interactions between cyclic and linear polymers can vary greatly depending on the polymer in question and the potential of neutron scattering as a tool for identification and characterization of the cyclic topology.

3.
J Colloid Interface Sci ; 601: 98-105, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34058556

ABSTRACT

HYPOTHESIS: Bottom-up synthesis of cubosomes is more energetically favourable than top-down approaches. However, bottom-up methods often rely on organic solvents such as ethanol as diluents, and lead to concurrent formation of liposomes. We propose using non-toxic diluents such as honey, glycerol and lactic acid for bottom-up cubosome synthesis. EXPERIMENTS: Cubosomes were prepared using solutions of phytantriol in a range of diluents including choline chloride-glycerol, honey, lactic acid, glycerol, and ethanol. These solutions were added dropwise to water containing the stabiliser, poloxamer 407, following an established method of cubosome synthesis. The resulting structures were characterised using small-angle X-ray scattering, DLS and cryo-TEM. FINDINGS: Cubosomes were successfully formed using a range of non-toxic diluents. This demonstrates that harmful organic solvents like ethanol are not required, and that the diluents need not be hydrotropes. Furthermore, unlike ethanol, these other diluents allowed formation of cubosomes without concurrent formation of liposomes. Given the huge potential for cubosomes in drug delivery, this new method offers a potentially useful low-cost, low-toxicity synthesis option.


Subject(s)
Drug Delivery Systems , Poloxamer , Excipients , Liposomes , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...