Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 123: 103897, 2020 08.
Article in English | MEDLINE | ID: mdl-32768044

ABSTRACT

The uterine electromyogram, also named Electrohysterogram (EHG), is a non-invasive technique that has been used for pregnancy and labour monitoring as well as for research work on uterine physiology. This technique is well established in this field. There is however a vast unexplored potential in the EHG that is currently the subject of interdisciplinary research work involving different scientific fields such as medicine, engineering, physics and mathematics. In this paper, an unsupervised clustering method is applied to a previously obtained set of frequency spectral representations of the respective EHG signal contractions that were previously automatically detected and delineated. An innovative approach using the complete spectrum projection is described, rather than a set of relevant points. The feasibility of the method is established despite the concerns of possible computational burden incurred by the processing of the whole spectrum. Given the unsupervised nature of this classification, a validation procedure was performed whereas the obtained clusters were labelled through the correlation with the common knowledge about the most relevant uterine contraction types, as described in the literature. As a result of this study, a spectral description of the Alvarez contractions was obtained where it was possible to breakdown these important events in two different types according to their spectrum. Spectral estimates of Braxton-Hicks contractions were also obtained and associated to one of the clusters. This led to a full spectral characterization of these uterine events.


Subject(s)
Uterine Contraction , Uterine Monitoring , Adolescent , Cluster Analysis , Electromyography , Female , Humans , Pregnancy , Uterus/diagnostic imaging
2.
Comput Biol Med ; 76: 178-91, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27474810

ABSTRACT

The uterine electromyogram, also called electrohysterogram (EHG), is an electrical signal generated by the uterine contractile activity. The EHG has been considered a promising biomarker for labour and preterm labour prediction, for which there is a demand for accurate estimation methods. Preterm labour is a significant public health concern and one of the major causes of neonatal mortality and morbidity [1]. Given the non-stationary properties of the EHG signal, time-frequency domain analysis can be used. For real life signals it is not generally possible to determine a priori the suitable quadratic time-frequency kernel or the appropriate wavelet family and relative parameters, regarding, for instance, the adequate detection of the signal frequency variation in time. There has been a lack of a comprehensive software tool for the selection of the appropriate time frequency representation of a multichannel EHG signal and extraction of relevant spectral and temporal information. The presented toolbox (Uterine Explorer) has been specifically designed for the EHG analysis and exploration in view of the characterisation of its components. The starting point is the multichannel scalogram or spectrogram representation from which frequency and time marginals, instantaneous frequency and bandwidth are obtained as EHG features. From this point the detected components undergo parametric and non-parametric spectral estimation and wavelet packet analysis. Intrauterine pressure estimation (IUP) is obtained using the Teager, RMS, wavelet marginal and Hilbert operators over the EHG. This toolbox has been tested to build up a dictionary of 288 EHG components [2], useful for research in preterm labour prediction.


Subject(s)
Electromyography/methods , Signal Processing, Computer-Assisted , Uterine Monitoring/methods , Female , Humans , Obstetric Labor, Premature/diagnosis , Pregnancy , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...