Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8346, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102124

ABSTRACT

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co1/3TaS2 as the first example of tetrahedral triple-Q magnetic ordering with the associated topological Hall effect (non-zero σxy(H = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-Q state.

2.
Nat Commun ; 14(1): 4199, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452016

ABSTRACT

The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI2 is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.


Subject(s)
Magnetic Fields , Magnets , Anisotropy , Neutrons , Physics
3.
Nat Commun ; 14(1): 3626, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37336881

ABSTRACT

Magnetic skyrmions are nanoscale topological textures that have been recently observed in different families of quantum magnets. These objects are called CP1 skyrmions because they are built from dipoles-the target manifold is the 1D complex projective space, CP1 ≅ S2. Here we report the emergence of magnetic CP2 skyrmions in a realistic spin-1 model, which includes both dipole and quadrupole moments. Unlike CP1 skyrmions, CP2 skyrmions can also arise as metastable textures of quantum paramagnets, opening a new road to discover emergent topological solitons in non-magnetic materials. The quantum phase diagram of the spin-1 model also includes magnetic field-induced CP2 skyrmion crystals that can be detected with regular momentum- (diffraction) and real-space (Lorentz transmission electron microscopy) experimental techniques.

4.
Phys Rev E ; 107(5-2): 055301, 2023 May.
Article in English | MEDLINE | ID: mdl-37329105

ABSTRACT

We consider a class of Hubbard-Stratonovich transformations suitable for treating Hubbard interactions in the context of quantum Monte Carlo simulations. A tunable parameter p allows us to continuously vary from a discrete Ising auxiliary field (p=∞) to a compact auxiliary field that couples to electrons sinusoidally (p=0). In tests on the single-band square and triangular Hubbard models, we find that the severity of the sign problem decreases systematically with increasing p. Selecting p finite, however, enables continuous sampling methods such as the Langevin or Hamiltonian Monte Carlo methods. We explore the tradeoffs between various simulation methods through numerical benchmarks.


Subject(s)
Electrons , Computer Simulation , Monte Carlo Method
5.
Nat Commun ; 13(1): 399, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35058433

ABSTRACT

Recent numerical studies indicate that the antiferromagnetic Kitaev honeycomb lattice model undergoes a magnetic-field-induced quantum phase transition into a new spin-liquid phase. This intermediate-field phase has been previously characterized as a gapless spin liquid. By implementing a recently developed variational approach based on the exact fractionalized excitations of the zero-field model, we demonstrate that the field-induced spin liquid is gapped and belongs to Kitaev's 16-fold way. Specifically, the low-field non-Abelian liquid with Chern number C = ±1 transitions into an Abelian liquid with C = ±4. The critical field and the field-dependent behaviors of key physical quantities are in good quantitative agreement with published numerical results. Furthermore, we derive an effective field theory for the field-induced critical point which readily explains the ostensibly gapless nature of the intermediate-field spin liquid.

6.
Nat Commun ; 12(1): 5331, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504075

ABSTRACT

An ongoing challenge in the study of quantum materials, is to reveal and explain collective quantum effects in spin systems where interactions between different modes types are important. Here we approach this problem through a combined experimental and theoretical study of interacting transverse and longitudinal modes in an easy-plane quantum magnet near a continuous quantum phase transition. Our inelastic neutron scattering measurements of Ba2FeSi2O7 reveal the emergence, decay, and renormalization of a longitudinal mode throughout the Brillouin zone. The decay of the longitudinal mode is particularly pronounced at the zone center. To account for the many-body effects of the interacting low-energy modes in anisotropic magnets, we generalize the standard spin-wave theory. The measured mode decay and renormalization is reproduced by including all one-loop corrections. The theoretical framework developed here is broadly applicable to quantum magnets with more than one type of low energy mode.

7.
Phys Rev Lett ; 127(26): 267201, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029479

ABSTRACT

We observe a wealth of multimagnon bound states in the strongly anisotropic spin-1 triangular antiferromagnet FeI_{2} using time-domain terahertz spectroscopy. These unconventional excitations can arise in ordered magnets due to attractive magnon-magnon interactions and alter their properties. We analyze the energy-magnetic field spectrum via an exact diagonalization method for a dilute gas of interacting magnons and detect up to 4- and 6-magnon bound states, hybridized with single magnons. This zoo of tunable interacting quasiparticles provides a unique platform to study decay and renormalization, reminiscent of the few-body problems found in cold-atom, nuclear, and particle physics.

8.
Phys Rev Lett ; 124(20): 207201, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501075

ABSTRACT

We consider a C_{6} invariant lattice of magnetic moments coupled via a Kondo exchange J with a 2D electron gas (2DEG). The effective Ruderman-Kittel-Kasuya-Yosida interaction between the moments stabilizes a magnetic skyrmion crystal in the presence of magnetic field and easy-axis anisotropy. An attractive aspect of this mechanism is that the magnitude of the magnetic ordering wave vectors, Q_{ν} (ν=1, 2, 3), is dictated by the Fermi wave number k_{F}: |Q_{ν}|=2k_{F}. Consequently, the topological contribution to the Hall conductivity of the 2DEG becomes of the order of the quantized value, e^{2}/h, when J is comparable to the Fermi energy ε_{F}.

9.
Phys Rev Lett ; 124(17): 177601, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412287

ABSTRACT

We report on the epitaxial strain-driven electronic and antiferromagnetic modulations of a pseudospin-half square-lattice realized in superlattices of (SrIrO_{3})_{1}/(SrTiO_{3})_{1}. With increasing compressive strain, we find the low-temperature insulating behavior to be strongly suppressed with a corresponding systematic reduction of both the Néel temperature and the staggered moment. However, despite such a suppression, the system remains weakly insulating above the Néel transition. The emergence of metallicity is observed under large compressive strain but only at temperatures far above the Néel transition. These behaviors are characteristics of the Slater-Mott crossover regime, providing a unique experimental model system of the spin-half Hubbard Hamiltonian with a tunable intermediate coupling strength.

10.
Nat Commun ; 11(1): 892, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060263

ABSTRACT

Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.

11.
Nat Commun ; 10(1): 5301, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757946

ABSTRACT

As a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antiferromagnetic order that resists external control. We report on the observation of a positive magnetoresistance that probes the staggered susceptibility of a pseudospin-half square-lattice Mott insulator built as an artificial SrIrO3/SrTiO3 superlattice. Its size is particularly large in the high-temperature insulating paramagnetic phase near the Néel transition. This magnetoresistance originates from a collective charge response to the large longitudinal spin fluctuations under a linear coupling between the external magnetic field and the staggered magnetization enabled by strong spin-orbit interaction. Our results demonstrate a magnetic control of the binding energy of the fluctuating particle-hole pairs in the Slater-Mott crossover regime analogous to the Bardeen-Cooper-Schrieffer-to-Bose-Einstein condensation crossover of ultracold-superfluids.

12.
Phys Rev Lett ; 123(5): 057201, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31491292

ABSTRACT

We introduce an extension of the Kitaev honeycomb model by including four-spin interactions that preserve the local gauge structure and, hence, the integrability of the original model. The extended model has a rich phase diagram containing five distinct vison crystals, as well as a symmetric π-flux spin liquid with a Fermi surface of Majorana fermions and a sequence of Lifshitz transitions. We discuss possible experimental signatures and, in particular, present finite-temperature Monte Carlo calculations of the specific heat and the static vison structure factor. We argue that our extended model emerges naturally from generic perturbations to the Kitaev honeycomb model.

13.
Phys Rev Lett ; 121(22): 227201, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547649

ABSTRACT

We discuss noncollinear magnetic phenomena whose local order parameter is characterized by more than one spin vector. By focusing on the simple cases of 2D triangular and 3D pyrochlore lattices, we demonstrate that their low-energy theories can be described by a one-parametric class of sigma models continuously interpolating between the classical Heisenberg model and the principal chiral model Tr(∂_{a}U∂_{a}U^{†}) for all U∈SU(2). The target space can be viewed as a U(1) fibration over the CP(1) space. The 3D version of our model is further generalized to break spatial and spin rotation symmetry SO(3)×SO(3)→SO(3).

14.
Phys Rev Lett ; 120(24): 247201, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29956985

ABSTRACT

We study the excitation spectrum in the dimer phase of the Shastry-Sutherland model by using an unbiased variational method that works in the thermodynamic limit. The method outputs dynamical correlation functions in all possible channels. This output is exploited to identify the order parameters with the highest susceptibility (single or multitriplon condensation in a specific channel) upon approaching a quantum phase transition in the magnetic field versus the J^{'}/J phase diagram. We find four different instabilities: antiferro spin nematic, plaquette spin nematic, stripe magnetic order, and plaquette order, two of which have been reported in previous studies.

15.
Phys Rev Lett ; 120(7): 077202, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542964

ABSTRACT

Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

16.
Phys Rev Lett ; 118(22): 226401, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28621967

ABSTRACT

We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

17.
Phys Rev Lett ; 117(20): 206601, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27886479

ABSTRACT

We study the transport properties of frustrated itinerant magnets comprising localized classical moments, which interact via exchange with the conduction electrons. Strong frustration stabilizes a liquidlike spin state, which extends down to temperatures well below the effective Ruderman-Kittel-Kasuya-Yosida interaction scale. The crossover into this state is characterized by spin structure factor enhancement at wave vectors smaller than twice the Fermi wave vector magnitude. The corresponding enhancement of electron scattering generates a resistivity upturn at decreasing temperatures.

18.
Rep Prog Phys ; 79(8): 084504, 2016 08.
Article in English | MEDLINE | ID: mdl-27376461

ABSTRACT

The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S = 1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

19.
Phys Rev Lett ; 116(18): 187202, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27203342

ABSTRACT

We study the effect of a nonmagnetic impurity inserted in a two-dimensional frustrated ferromagnet above its saturation magnetic field H_{sat} for arbitrary spin S. We demonstrate that the ground state includes a magnetic vortex that is nucleated around the impurity over a finite range of magnetic field H_{sat}≤H≤H_{sat}^{I}. Upon approaching the quantum critical point at H=H_{sat}, the radius of the magnetic vortex diverges as the magnetic correlation length: ξ∝1/sqrt[H-H_{sat}]. These results are derived both for the lattice and in the continuum limit.

20.
Phys Rev Lett ; 115(10): 107201, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26382699

ABSTRACT

We demonstrate that frustrated exchange interactions can produce exotic 3D crystals of vortex strings near the saturation field (H=H(sat)) of body- and face-centered cubic Mott insulators. The combination of cubic symmetry and frustration leads to a magnon spectrum of the fully polarized spin state (H>H(sat)) with degenerate minima at multiple noncoplanar Q vectors. This spectrum becomes gapless at the quantum critical point H=H(sat) and the magnetic ordering below H(sat) can be formally described as a condensate of a dilute gas of bosons. By expanding in the lattice gas parameter, we find that different vortex crystals span sizable regions of the phase diagrams for isotropic exchange and are further stabilized by symmetric exchange anisotropy.

SELECTION OF CITATIONS
SEARCH DETAIL
...