Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 9446, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32523126

ABSTRACT

SnO particles were synthesized by an alkali-assisted hydrothermal and microwave methods. The aqueous-based reactions were carried out at pH ~ 8, under inert atmosphere (Ar). The reactions were taken under different times, and a full XRD structural analysis was made to evaluate the conversion from the Sn6O4(OH)4 intermediate to SnO particles. Williamson-Hall analysis showed that the size and strain of the SnO particles were time and route treatment dependent. Microwave heating yielded a single tetragonal SnO phase after 1 h of thermal treatment, and TEM images revealed spherical-shaped SnO nanoparticles with an average size of 9(1) nm. While by the hydrothermal treatment single SnO phase was obtained only after 4 hours, yielding non-uniform and elongated particles with sub-micrometric size. A dissolution-recrystallization process was taken into account as the mechanism for SnO particles formation, in which hydroxylated complexes, Sn2(OH)6-2, then condense to form the oxide. The time-shorting reaction provided by the microwave-assisted synthesis may be attributed to better heat distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...