Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 135(2): 723-739, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34800132

ABSTRACT

KEY MESSAGE: Including allele, dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels. Several studies have shown how to leverage allele dosage information to improve the accuracy of genomic selection models in autotetraploid. In this study, we expanded the methodology used for genomic selection in autotetraploid to higher (and mixed) ploidy levels. We adapted the models to build covariance matrices of both additive and digenic dominance effects that are subsequently used in genomic selection models. We applied these models using estimates of ploidy and allele dosage to sugarcane and sweet potato datasets and validated our results by also applying the models in simulated data. For the simulated datasets, including allele dosage information led up to 140% higher mean predictive abilities in comparison to using diploidized markers. Including dominance effects were highly advantageous when using diploidized markers, leading to mean predictive abilities which were up to 115% higher in comparison to only including additive effects. When the frequency of heterozygous genotypes in the population was low, such as in the sugarcane and sweet potato datasets, there was little advantage in including allele dosage information in the models. Overall, we show that including allele dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels.


Subject(s)
Ipomoea batatas , Polyploidy , Alleles , Genomics/methods , Genotype , Ipomoea batatas/genetics , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide , Saccharum
2.
PLoS One ; 16(5): e0235554, 2021.
Article in English | MEDLINE | ID: mdl-33970915

ABSTRACT

In the context of genomic selection, we evaluated and compared breeding programs using either index selection or independent culling for recurrent selection of parents. We simulated a clonally propagated crop breeding program for 20 cycles using either independent culling or an economic index with two unfavourably correlated traits under selection. Cycle time from crossing to selection of parents was kept the same for both strategies. Both methods led to increasingly unfavourable genetic correlations between traits and, compared to independent culling, index selection led to larger changes in the genetic correlation between the two traits. When linkage disequilibrium was not considered, the two methods had similar losses of genetic diversity. Two independent culling approaches were evaluated, one using optimal culling levels and one using the same selection intensity for both traits. Optimal culling levels outperformed the same selection intensity even when traits had the same economic importance. Therefore, accurately estimating optimal culling levels is essential for maximizing gains when independent culling is performed. Once optimal culling levels are achieved, independent culling and index selection lead to comparable genetic gains.


Subject(s)
Genomics , Plant Breeding , Computer Simulation , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Plant Breeding/economics , Quantitative Trait, Heritable , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...