Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6635): 901-907, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36862787

ABSTRACT

Mutations in the 3' to 5' RNA exonuclease USB1 cause hematopoietic failure in poikiloderma with neutropenia (PN). Although USB1 is known to regulate U6 small nuclear RNA maturation, the molecular mechanism underlying PN remains undetermined, as pre-mRNA splicing is unaffected in patients. We generated human embryonic stem cells harboring the PN-associated mutation c.531_delA in USB1 and show that this mutation impairs human hematopoiesis. Dysregulated microRNA (miRNA) levels in USB1 mutants during blood development contribute to hematopoietic failure, because of a failure to remove 3'-end adenylated tails added by PAPD5/7. Modulation of miRNA 3'-end adenylation through genetic or chemical inhibition of PAPD5/7 rescues hematopoiesis in USB1 mutants. This work shows that USB1 acts as a miRNA deadenylase and suggests PAPD5/7 inhibition as a potential therapy for PN.


Subject(s)
Hematopoiesis , MicroRNAs , Neutropenia , Phosphoric Diester Hydrolases , Humans , Hematopoiesis/genetics , Human Embryonic Stem Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Neutropenia/genetics , Neutropenia/therapy , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Mutation
2.
Hepatology ; 72(4): 1412-1429, 2020 10.
Article in English | MEDLINE | ID: mdl-32516515

ABSTRACT

BACKGROUND AND AIMS: Telomere attrition is a major risk factor for end-stage liver disease. Due to a lack of adequate models and intrinsic difficulties in studying telomerase in physiologically relevant cells, the molecular mechanisms responsible for liver disease in patients with telomere syndromes remain elusive. To circumvent that, we used genome editing to generate isogenic human embryonic stem cells (hESCs) harboring clinically relevant mutations in telomerase and subjected them to an in vitro, stage-specific hepatocyte differentiation protocol that resembles hepatocyte development in vivo. APPROACH AND RESULTS: Using this platform, we observed that while telomerase is highly expressed in hESCs, it is quickly silenced, specifically due to telomerase reverse transcriptase component (TERT) down-regulation, immediately after endoderm differentiation and completely absent in in vitro-derived hepatocytes, similar to what is observed in human primary hepatocytes. While endoderm derivation is not impacted by telomere shortening, progressive telomere dysfunction impaired hepatic endoderm formation. Consequently, hepatocyte derivation, as measured by expression of specific hepatic markers as well by albumin expression and secretion, is severely compromised in telomerase mutant cells with short telomeres. Interestingly, this phenotype was not caused by cell death induction or senescence. Rather, telomere shortening prevents the up-regulation and activation of human hepatocyte nuclear factor 4 alpha (HNF4α) in a p53-dependent manner. Both reactivation of telomerase and silencing of p53 rescued hepatocyte formation in telomerase mutants. Likewise, the conditional expression (doxycycline-controlled) of HNF4α, even in cells that retained short telomeres, accrued DNA damage, and exhibited p53 stabilization, successfully restored hepatocyte formation from hESCS. CONCLUSIONS: Our data show that telomere dysfunction acts as a major regulator of HNF4α during hepatocyte development, pointing to a target in the treatment of liver disease in telomere-syndrome patients.


Subject(s)
Hepatocyte Nuclear Factor 4/physiology , Hepatocytes/physiology , Telomere/physiology , Tumor Suppressor Protein p53/physiology , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells , Hepatocytes/cytology , Humans , Telomerase/genetics
3.
Blood Adv ; 4(12): 2717-2722, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32559291

ABSTRACT

Dyskeratosis congenita (DC) is a pediatric bone marrow failure syndrome caused by germline mutations in telomere biology genes. Mutations in DKC1 (the most commonly mutated gene in DC), the 3' region of TERC, and poly(A)-specific ribonuclease (PARN) cause reduced levels of the telomerase RNA component (TERC) by reducing its stability and accelerating TERC degradation. We have previously shown that depleting wild-type DKC1 levels by RNA interference or expression of the disease-associated A353V mutation in the DKC1 gene leads to decay of TERC, modulated by 3'-end oligoadenylation by noncanonical poly(A) polymerase 5 (PAPD5) followed by 3' to 5' degradation by EXOSC10. Furthermore, the constitutive genetic silencing of PAPD5 is sufficient to rescue TERC levels, restore telomerase function, and elongate telomeres in DKC1_A353V mutant human embryonic stem cells (hESCs). Here, we tested a novel PAPD5/7 inhibitor (RG7834), which was originally discovered in screens against hepatitis B viral loads in hepatic cells. We found that treatment with RG7834 rescues TERC levels, restores correct telomerase localization in DKC1 and PARN-depleted cells, and is sufficient to elongate telomeres in DKC1_A353V hESCs. Finally, treatment with RG7834 significantly improved definitive hematopoietic potential from DKC1_A353V hESCs, indicating that the chemical inhibition of PAPD5 is a potential therapy for patients with DC and reduced TERC levels.


Subject(s)
Dyskeratosis Congenita , Telomerase , Cell Cycle Proteins/genetics , Child , Chromosomal Proteins, Non-Histone , DNA-Directed DNA Polymerase , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/therapy , Exoribonucleases , Exosome Multienzyme Ribonuclease Complex/metabolism , Hematopoiesis , Humans , Mutation , Nuclear Proteins/genetics , RNA Nucleotidyltransferases , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism
4.
Oncogene ; 39(10): 2055-2068, 2020 03.
Article in English | MEDLINE | ID: mdl-31801972

ABSTRACT

Tumorigenesis is associated with the development of a highly variable pattern of cellular diversity, consequence of genetic and epigenetic diversification, followed by clonal selection and expansion. This process is shaped by the microenvironment and leads to intratumoral heterogeneity, which is characterized by differences between cancer cells in terms of gene expression, phenotypic markers, growth dynamics, and resistance to treatment. Another relevant aspect in intratumor heterogeneity is cell plasticity-the ability of a cell to switch to new identities. In this review, we focus on the mechanisms that regulate cancer cell plasticity within a tumor, and explore the concept of tumor propagating cells, or TPCs, a cancer cell able to propagate/phenocopy the parental tumor and recapitulate tumor heterogeneity. We discuss the influence of the microenvironment and driver mutations on TPCs formation and function, the existence of phenotypically distinct TPC clones within a tumor, the evolution of TPCs with disease progression, and their implications for therapy.


Subject(s)
Cell Plasticity , Genetic Heterogeneity , Mutation , Neoplasms/physiopathology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics
5.
Blood ; 133(12): 1308-1312, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30728146

ABSTRACT

Reduced levels of TERC, the telomerase RNA component, cause dyskeratosis congenita (DC) in patients harboring mutations in TERC, PARN, NOP10, NHP2, NAF1, or DKC1. Inhibition of the noncanonical poly(A) polymerase PAPD5, or the exosome RNA degradation complex, partially restores TERC levels in immortalized DKC1 mutant cells, but it remains unknown if modulation of posttranscriptional processing of TERC could improve hematopoietic output in DC. We used human embryonic stem cells (hESCs) with a common dyskerin mutation (DKC1_A353V), which have defective telomere maintenance and reduced definitive hematopoietic potential, to understand the effects of reducing EXOSC3 activity, or silencing PAPD5-mediated oligoadenylation, on hematopoietic progenitor specification and function in DC. Reduction of EXOSC3 or PAPD5 levels in DKC1 mutant hESCs led to functional improvements in TERC levels and telomerase activity, with concomitant telomere elongation and reduced levels of DNA damage signaling. Interestingly, the silencing of PAPD5, but not EXOSC3, significantly restored definitive hematopoietic potential in DKC1 mutant cells. Mechanistically, we show that PAPD5 inhibition is sustained in differentiated CD34+ cells, with a concomitant increase in mature, functional, forms of TERC, indicating that regulation of PAPD5 is a potential strategy to reverse hematologic dysfunction in DC patients.


Subject(s)
Dyskeratosis Congenita/prevention & control , Embryonic Stem Cells/cytology , Hematopoiesis , Mutation , RNA Nucleotidyltransferases/antagonists & inhibitors , RNA Processing, Post-Transcriptional , RNA/metabolism , Telomerase/metabolism , Cell Cycle Proteins/genetics , Dyskeratosis Congenita/metabolism , Dyskeratosis Congenita/pathology , Embryonic Stem Cells/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Humans , Nuclear Proteins/genetics , RNA/genetics , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Telomerase/genetics , Telomere
6.
Cell Rep ; 22(8): 2006-2015, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466729

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by a truncated lamin A protein (progerin) that drives cellular and organismal decline. HGPS patient-derived fibroblasts accumulate genomic instability, but its underlying mechanisms and contribution to disease remain poorly understood. Here, we show that progerin-induced replication stress (RS) drives genomic instability by eliciting replication fork (RF) stalling and nuclease-mediated degradation. Rampant RS is accompanied by upregulation of the cGAS/STING cytosolic DNA sensing pathway and activation of a robust STAT1-regulated interferon (IFN)-like response. Reducing RS and the IFN-like response, especially with calcitriol, improves the fitness of progeria cells and increases the efficiency of cellular reprogramming. Importantly, other compounds that improve HGPS phenotypes reduce RS and the IFN-like response. Our study reveals mechanisms underlying progerin toxicity, including RS-induced genomic instability and activation of IFN-like responses, and their relevance for cellular decline in HGPS.


Subject(s)
DNA Replication , Interferons/metabolism , Lamin Type A/metabolism , Stress, Physiological , Animals , Calcitriol/pharmacology , Cytosol/metabolism , DNA/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Mice , Phenotype , Progeria/metabolism , Receptors, Pattern Recognition/metabolism , STAT1 Transcription Factor/metabolism
7.
Stem Cell Reports ; 9(2): 409-418, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28757166

ABSTRACT

Dyskeratosis congenita (DC) is a bone marrow failure syndrome associated with telomere dysfunction. The progression and molecular determinants of hematopoietic failure in DC remain poorly understood. Here, we use the directed differentiation of human embryonic stem cells harboring clinically relevant mutations in telomerase to understand the consequences of DC-associated mutations on the primitive and definitive hematopoietic programs. Interestingly, telomere shortening does not broadly impair hematopoiesis, as primitive hematopoiesis is not impaired in DC cells. In contrast, while phenotypic definitive hemogenic endothelium is specified, the endothelial-to-hematopoietic transition is impaired in cells with shortened telomeres. This failure is caused by DNA damage accrual and is mediated by p53 stabilization. These observations indicate that detrimental effects of telomere shortening in the hematopoietic system are specific to the definitive hematopoietic lineages. This work illustrates how telomere dysfunction impairs hematopoietic development and creates a robust platform for therapeutic discovery for treatment of DC patients.


Subject(s)
Dyskeratosis Congenita/blood , Dyskeratosis Congenita/genetics , Hematopoiesis/genetics , Tumor Suppressor Protein p53/genetics , Anemia, Aplastic/blood , Anemia, Aplastic/etiology , Anemia, Aplastic/pathology , Biomarkers , Bone Marrow/pathology , Bone Marrow Diseases/blood , Bone Marrow Diseases/etiology , Bone Marrow Diseases/pathology , Bone Marrow Failure Disorders , Cell Differentiation/genetics , DNA Damage , DNA Mutational Analysis , Dyskeratosis Congenita/pathology , Embryonic Stem Cells/metabolism , Gene Knockout Techniques , Gene Targeting , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hemoglobinuria, Paroxysmal/blood , Hemoglobinuria, Paroxysmal/etiology , Hemoglobinuria, Paroxysmal/pathology , Histones/metabolism , Humans , Immunophenotyping , Models, Biological , Mutation , Phenotype , Telomere , Telomere Homeostasis/genetics , Tumor Suppressor Protein p53/metabolism
9.
Apoptosis ; 11(7): 1139-48, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16703265

ABSTRACT

Exposure of cells to ultraviolet (UV) light damages the genome and the persistence of DNA lesions triggers apoptosis in mammalian cells. RNA transcription blockage by DNA damage is believed to be implicated in signaling for UV-induced apoptosis, but the role played by DNA replication in this process is still unclear. To address this point, we have employed the DNA polymerase inhibitor aphidicolin in UV-irradiated wild-type and XPB-mutated Chinese hamster ovary cells. The data obtained with synchronized cells indicate that induction of apoptosis by UV light is independent of the cell cycle phase. Nevertheless, cells treated with aphidicolin after UV exposure showed a significant prevention of apoptosis induction when compared to proliferating cells. These results were observed in both DNA-repair proficient and deficient cells, indicating that the prevention of apoptosis by aphidicolin is independent of the cells' ability to repair the photolesions caused by UV. Taken together, these data suggest that replication of damaged DNA also leads to critical events signaling for UV-induced cell death.


Subject(s)
Apoptosis/physiology , DNA Replication/physiology , Ultraviolet Rays , Animals , Aphidicolin/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , CHO Cells , Cell Cycle/physiology , Cell Survival/drug effects , Cell Survival/radiation effects , Cricetinae , Cricetulus , DNA Replication/drug effects , DNA Replication/genetics , Dose-Response Relationship, Radiation , Flow Cytometry , Microscopy, Fluorescence , Time Factors , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...