Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(24): 12681-12693, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619573

ABSTRACT

Comparison of adaptive and neutral genetic markers is a valuable approach to characterize the evolutionary consequences of populations living in environments threatened by anthropogenic disturbances, such as forest fragmentation. Shifts in allele frequencies, low genetic variability, and a small effective population size can be considered clear signs of forest fragmentation effects (due to genetic drift) over natural populations, while adaptive responses correlate with environmental variables. Brazilian Atlantic Forest had its landscape drastically reduced and fragmented. Now, several forest remnants are isolated from each other by urban and crop areas. We sampled Drosophila mediopunctata populations from eight forest remnants dispersed on two adjacent geomorphological regions, which are physiognomic and climatically quite distinct. Microsatellite data of inversion-free chromosomes (neutral genetic marker) indicate low structuration among populations suggesting that they were panmictic and greatly influenced by gene flow. Moreover, significant differences in chromosomal inversion frequencies (adaptive genetic marker) among populations and their correlations with climatic and geographical variables indicate that genetic divergence among populations could be an adaptive response to their environment. Nonetheless, we observed a significant difference in inversion frequencies of a population in two consecutive years that may be associated with edge and demographic effects. Also, it may be reflecting seasonal changes of inversion frequencies influenced by great temperature variation due to edge effects. Moreover, the forest fragment size does not affect genetic variation of neutral markers. Our data indicate that despite oscillations in chromosomal inversion frequencies, D. mediopunctata populations from Brazilian Atlantic Forest and their divergence may be driven by adaptive factors to local differences, perhaps because it is a small flying insect easily carried by the wind increasing its migration rates.

2.
PeerJ ; 5: e3063, 2017.
Article in English | MEDLINE | ID: mdl-28289566

ABSTRACT

BACKGROUND: Yeasts are a necessary requisite in the diet of most Drosophila species that, in turn, may vector their dispersal in natural environments. Differential attractiveness experiments and the isolation of yeasts consumed by Drosophila may be informative for characterizing this association. Hanseniaspora uvarum is among the most common yeast species isolated from Drosophila crops, with high attractiveness to drosophilids. Saccharomyces cerevisiae has been widely used to collect flies, and it allows broad sampling of almost all local Drosophila species. Pronounced differences in the field concerning Drosophila attractivity to baits seeded with these yeast species have been previously reported. However, few explicit generalizations have been set. Since late fifties, no field experiments of Drosophila attractivity were carried out in the Neotropical region, which is facing shifts in abiotic and biotic factors. Our objective is to characterize preference behavior that mediates the interaction in the wild among Neotropical Drosophila species and yeasts associated with them. We want to set a broad generalization about drosophilids attracted to these yeasts. Here we present the results of a differential attractiveness experiment we carried out in a natural Atlantic Rainforest fragment to assess the preferences of Drosophila species groups to baits inoculated with H. uvarum and S. cerevisiae. METHODS: Both yeast species were cultured in GYMP broth and separately poured in autoclaved mashed banana that was left fermenting. In the field, we collected drosophilids over five arrays of three different baits: non-inoculated autoclaved banana and banana inoculated with each yeast. In the laboratory the drosophilids were sorted to five sets according to their external morphology and/or genitalia: tripunctata; guarani; willistoni; exotic; and the remaining flies pooled in others. RESULTS AND CONCLUSIONS: Uninoculated banana baits attracted virtually no flies. We found significant departures from random distribution over the other two baits (1:1 proportion) for all sets, except the pooled others. Flies of the sets willistoni and exotic preferred H. uvarum over S. cerevisiae, while the remaining sets were more attracted to S. cerevisiae. Previously, various authors reported similar patterns in attraction experiments with S. cerevisiae and H. uvarum. It is also noteworthy that both yeast species have been isolated from natural substrates and crops of Drosophila species. Taken together, these results suggest that the preferences among Drosophila species groups may be reflecting deep and stable relations with yeast species in natural environments. They can be summarized as: forest dwelling species from subgenus Drosophila (such as tripunctata and guarani groups) are attracted to banana baits seeded with S. cerevisiae; while exotic (as D. melanogaster) and subgenus Sophophora species are preferentially attracted to baits seeded with H. uvarum.

SELECTION OF CITATIONS
SEARCH DETAIL
...