Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(18): 127439, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32717373

ABSTRACT

Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.


Subject(s)
Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Cysteine/chemistry , Nitriles/chemical synthesis , Binding Sites , Cathepsin B/metabolism , Drug Evaluation, Preclinical , Humans , Models, Molecular , Protein Binding , Stereoisomerism , Structure-Activity Relationship
2.
J Chem Inf Model ; 60(3): 1666-1677, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32126170

ABSTRACT

Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol-1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.


Subject(s)
Cysteine Proteases , Trypanosoma cruzi , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/pharmacology , Protozoan Proteins
3.
RSC Med Chem ; 11(11): 1275-1284, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-34095840

ABSTRACT

The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Hence, peptidomimetic cruzipain inhibitors having a reactive group (known as warhead) are subject to continuous studies to discover novel antichagasic compounds. Here, we evaluated how different warheads for a set of structurally similar related compounds could inhibit the activity of cruzipain and, ultimately, their trypanocidal effect. We first investigated in silico the intrinsic reactivity of these compounds by applying the Fukui index to correlate it with the enzymatic affinity. Then, we evaluated their potency against T. cruzi (Y and Tulahuen strains), which revealed the reversible cruzain inhibitor Neq0656 as a better trypanocidal agent (ECY.strain 50 = 0.1 µM; SI = 58.4) than the current drug benznidazole (ECY.strain 50 = 5.1 µM; SI > 19.6). We also measured the half-life time by HPLC analysis of three lead compounds in the presence of glutathione and cysteine to experimentally assess their intrinsic reactivity. Results clearly illustrated the reactivity trend for the warheads (azanitrile > aldehyde > nitrile), where the aldehyde displayed an intermediate intrinsic reactivity. Therefore, the aldehyde bearing peptidomimetic compounds should be subject for in-depth evaluation in the drug discovery process.

4.
Bioorg Med Chem ; 27(22): 115083, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31561938

ABSTRACT

The structure-activity relationship for nitrile-based cruzain inhibitors incorporating a P2 amide replacement based on trifluoroethylamine was explored by deconstruction of a published series of inhibitors. It was demonstrated that the P3 biphenyl substituent present in the published inhibitor structures could be truncated to phenyl with only a small loss of affinity. The effects of inverting the configuration of the P2 amide replacement and linking a benzyl substituent at P1 were observed to be strongly nonadditive. We show that plotting affinity against molecular size provides a means to visualize both the molecular size efficiency of structural transformations and the nonadditivity in the structure-activity relationship. We also show how the relationship between affinity and lipophilicity, measured by high-performance liquid chromatography with an immobilized artificial membrane stationary phase, may be used to normalize affinity with respect to lipophilicity.


Subject(s)
Amides/chemistry , Cysteine Endopeptidases/chemical synthesis , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemical synthesis , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...