Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 15(3)2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27525881

ABSTRACT

Recombinant inbred lines (RILs) are a valuable resource for building genetic linkage maps. The presence of genetic variability in the RILs is essential for detecting associations between molecular markers and loci controlling agronomic traits of interest. The main goal of this study was to quantify the genetic diversity of a common bean RIL population derived from a cross between Rudá (Mesoamerican gene pool) and AND 277 (Andean gene pool). This population was developed by the single seed descent method from 500 F2 plants until the F10 generation. Seven quantitative traits were evaluated in the field in 393 RILs, the parental lines, and five control cultivars. The plants were grown using a randomized block design with additional controls and three replicates. Significant differences were observed among the RILs for all evaluated traits (P < 0.01). A comparison of the RILs and parental lines showed significant differences (P < 0.01) for the number of days to flowering (DFL) and to harvest (DH), productivity (PROD) and mass of 100 beans (M100); however, there were no significant differences for plant architecture, degree of seed flatness, or seed shape. These results indicate the occurrence of additive x additive epistatic interactions for DFL, DH, PROD, and M100. The 393 RILs were shown to fall into 10 clusters using Tocher's method. This RIL population clearly contained genetic variability for the evaluated traits, and this variability will be crucial for future studies involving genetic mapping and quantitative trait locus identification and analysis.


Subject(s)
Phaseolus/genetics , Epistasis, Genetic , Genes, Plant , Genetic Loci , Genetic Variation , Phaseolus/anatomy & histology , Phaseolus/growth & development , Phenotype , Plant Breeding , Quantitative Trait Loci
2.
Genet Mol Res ; 14(4): 12660-74, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26505417

ABSTRACT

In the final phases of new soybean cultivar development, lines are cultivated in several locations across multiple seasons with the intention of identifying and selecting superior genotypes for quantitative traits. In this context, this study aimed to study the genotype-by-environment interaction for the trait grain yield (kg/ha), and to evaluate the adaptability and stability of early-cycle soybean genotypes using the additive main effects and multiplicative interaction (AMMI) analysis, genotype main effects and genotype x environment interaction (GGE) biplot, and factor analysis methods. Additionally, the efficiency of these methods was compared. The experiments were carried out in five cities in the State of Mato Grosso: Alto Taquari, Lucas do Rio Verde, Sinop, Querência, and Rondonópolis, in the 2011/2012 and 2012/2013 seasons. Twenty-seven early-cycle soybean genotypes were evaluated, consisting of 22 lines developed by Universidade Federal de Uberlândia (UFU) soybean breeding program, and five controls: UFUS Carajás, MSOY 6101, MSOY 7211, UFUS Guarani, and Riqueza. Significant and complex genotype-by-environment interactions were observed. The AMMI model presented greater efficiency by retaining most of the variation in the first two main components (61.46%), followed by the GGE biplot model (57.90%), and factor analysis (54.12%). Environmental clustering among the methodologies was similar, and was composed of one environmental group from one location but from different seasons. Genotype G5 presented an elevated grain yield, and high adaptability and stability as determined by the AMMI, factor analysis, and GGE biplot methodologies.


Subject(s)
Glycine max/genetics , Edible Grain/genetics , Environment , Factor Analysis, Statistical , Genetic Association Studies , Models, Genetic , Multivariate Analysis , Plant Breeding/statistics & numerical data , Quantitative Trait, Heritable , Glycine max/metabolism
3.
Genet Mol Res ; 14(3): 11515-23, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26436392

ABSTRACT

Cultivars of common bean with more erect plant architecture and greater tolerance to degree of lodging are required by producers. Thus, to evaluate the potential of hypocotyl diameter (HD) in family selection for plant architecture improvement of common bean, the HDs of 32 F2 plants were measured in 3 distinct populations, and the characteristics related to plant architecture were analyzed in their progenies. Ninety-six F2:3 families and 4 controls were evaluated in a randomized block design, with 3 replications, analyzing plant architecture grade, HD, and grain yield during the winter 2010 and drought 2011 seasons. We found that the correlation between the HD of F2 plants and traits related to plant architecture of F2:3 progenies were of low magnitude compared to the estimates for correlations considering the parents, indicating a high environmental influence on HD in bean plants. There was a predominance of additive genetic effects on the determination of hypocotyl diameter, which showed higher precision and accuracy compared to plant architecture grade. Thus, this characteristic can be used to select progenies in plant architecture improvement of common beans; however, selection must be based on the means of at least 39 plants in the plot, according to the results of repeatability analysis.


Subject(s)
Hypocotyl/anatomy & histology , Phaseolus/anatomy & histology , Analysis of Variance , Droughts , Phenotype , Reproducibility of Results , Seasons
4.
Genet Mol Res ; 14(3): 9633-45, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26345896

ABSTRACT

The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.


Subject(s)
Adaptation, Biological/genetics , Genomic Instability , Genotype , Glycine max/genetics , Seasons , Algorithms , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...