Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 167(1): 141-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21384175

ABSTRACT

Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the "escape hypothesis". Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.


Subject(s)
Arecaceae/physiology , Ecosystem , Seedlings/physiology , Trees/physiology , Argentina , Euphorbiaceae/physiology , Geography , Rivers , Sapindaceae/physiology , Seed Dispersal , Species Specificity
2.
Proc Biol Sci ; 275(1637): 897-905, 2008 Apr 22.
Article in English | MEDLINE | ID: mdl-18198146

ABSTRACT

Persistence and ubiquity of vertically transmitted Neotyphodium endophytes in grass populations is puzzling because infected plants do not consistently exhibit increased fitness. Using an annual grass population model, we show that the problems for matching endophyte infection and mutualism are likely to arise from difficulties in detecting small mutualistic effects, variability in endophyte transmission efficiency and an apparent prevalence of non-equilibrium in the dynamics of infection. Although endophytes would ultimately persist only if the infection confers some fitness increase to the host plants, such an increase can be very small, as long as the transmission efficiency is sufficiently high. In addition, imperfect transmission limits effectively the equilibrium infection level if the infected plants exhibit small or large reproductive advantage. Under frequent natural conditions, the equilibrium infection level is very sensitive to small changes in transmission efficiency and host reproductive advantage, while convergence to such an equilibrium is slow. As a consequence, seed immigration and environmental fluctuation are likely to keep local infection levels away from equilibrium. Transient dynamics analysis suggests that, when driven by environmental fluctuation, infection frequency increases would often be larger than decreases. By contrast, when due to immigration, overrepresentation of infected individuals tends to vanish faster than equivalent overrepresentation of non-infected individuals.


Subject(s)
Fungi/physiology , Poaceae/microbiology , Symbiosis , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...