Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Biol Psychiatry ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848814

ABSTRACT

BACKGROUND: MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy of Mef2c, or selectively lacking both copies of Mef2c in cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. METHODS: Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. RESULTS: Loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. CONCLUSIONS: MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.

2.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746148

ABSTRACT

MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy of Mef2c , or selectively lacking both copies of Mef2c in cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. We found that loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. Our findings indicate that MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.

3.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38644996

ABSTRACT

Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived cortical waves without inducing compensatory activity, the role these waves play in the development of the visual cortex remains unclear. To address this question, we used targeted conditional genetics to disrupt cholinergic retinal waves and their propagation to select regions of primary visual cortex, which largely prevented compensatory patterned activity. We find that loss of cholinergic retinal waves without compensation impaired the molecular and synaptic maturation of excitatory neurons located in the input layers of visual cortex, as well as layer 1 interneurons. These perinatal molecular and synaptic deficits also relate to functional changes observed at later ages. We find that the loss of perinatal cholinergic retinal waves causes abnormal visual cortex retinotopy, mirroring changes in the retinotopic organization of gene expression, and additionally impairs the processing of visual information. We further show that retinal waves are necessary for higher order processing of sensory information by impacting the state-dependent activity of layer 1 interneurons, a neuronal type that shapes neocortical state-modulation, as well as for state-dependent gain modulation of visual responses of excitatory neurons. Together, these results demonstrate that a brief targeted perinatal disruption of patterned spontaneous activity alters early cortical gene expression as well as synaptic and physiological development, and compromises both fundamental and, notably, higher-order functions of visual cortex after eye-opening.

4.
Neuron ; 111(22): 3590-3603.e5, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625400

ABSTRACT

Although cardinal cortical interneuron identity is established upon cell-cycle exit, it remains unclear whether specific interneuron subtypes are pre-established, and if so, how their identity is maintained prior to circuit integration. We conditionally removed Sox6 (Sox6-cKO) in migrating somatostatin (Sst+) interneurons and assessed the effects on their mature identity. In adolescent mice, five of eight molecular Sst+ subtypes were nearly absent in the Sox6-cKO cortex without a reduction in cell number. Sox6-cKO cells displayed electrophysiological maturity and expressed genes enriched within the broad class of Sst+ interneurons. Furthermore, we could infer subtype identity prior to cortical integration (embryonic day 18.5), suggesting that the loss in subtype was due to disrupted subtype maintenance. Conversely, Sox6 removal at postnatal day 7 did not disrupt marker expression in the mature cortex. Therefore, Sox6 is necessary during migration for maintenance of Sst+ subtype identity, indicating that subtype maintenance requires active transcriptional programs.


Subject(s)
Interneurons , Somatostatin , Mice , Animals , Interneurons/physiology , Somatostatin/metabolism , Electrophysiological Phenomena , Cerebral Cortex , Parvalbumins/metabolism
5.
Mol Psychiatry ; 28(7): 3133-3143, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069344

ABSTRACT

GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.


Subject(s)
Pyramidal Cells , Signal Transduction , Animals , Mice , Interneurons/metabolism , Neuregulin-1/metabolism , Neurons/metabolism , Parvalbumins/metabolism , Pyramidal Cells/metabolism , Receptor, ErbB-4/genetics
6.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36829757

ABSTRACT

Recent progress in cortical stem cell transplantation has demonstrated its potential to repair the brain. However, current transplant models have yet to demonstrate that the circuitry of transplant-derived neurons can encode useful function to the host. This is likely due to missing cell types within the grafts, abnormal proportions of cell types, abnormal cytoarchitecture, and inefficient vascularization. Here, we devised a transplant platform for testing neocortical tissue prototypes. Dissociated mouse embryonic telencephalic cells in a liquid scaffold were transplanted into aspiration-lesioned adult mouse cortices. The donor neuronal precursors differentiated into upper and deep layer neurons that exhibited synaptic puncta, projected outside of the graft to appropriate brain areas, became electrophysiologically active within one month post-transplant, and responded to visual stimuli. Interneurons and oligodendrocytes were present at normal densities in grafts. Grafts became fully vascularized by one week post-transplant and vessels in grafts were perfused with blood. With this paradigm, we could also organize cells into layers. Overall, we have provided proof of a concept for an in vivo platform that can be used for developing and testing neocortical-like tissue prototypes.

8.
J Neurosci ; 41(43): 8876-8886, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34503995

ABSTRACT

Cortical parvalbumin-expressing (Pvalb+) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood.SIGNIFICANCE STATEMENT Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.


Subject(s)
Cerebral Cortex/metabolism , Neurons/metabolism , Parvalbumins/biosynthesis , SOXD Transcription Factors/biosynthesis , Synapses/metabolism , Animals , Animals, Newborn , Cerebral Cortex/cytology , Female , Gene Knock-In Techniques , Male , Mice , Mice, Transgenic , Organ Culture Techniques , Parvalbumins/genetics , SOXD Transcription Factors/genetics , Synapses/genetics
9.
Cell ; 183(4): 845-847, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33186526

ABSTRACT

In this issue of Cell, Gouwens et al. establish the state of the art for defining inhibitory cell types in the mouse neocortex. By combining morphological, electrophysiological, and transcriptomic features to classify interneurons in the mouse visual cortex, this work provides a roadmap for understanding the diversity of cell types and their functional role in cortical computations.


Subject(s)
Neocortex , Transcriptome , Animals , Electrophysiological Phenomena , Interneurons , Mice
10.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Article in English | MEDLINE | ID: mdl-32807948

ABSTRACT

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Interneurons/physiology , Animals , Callithrix , Cerebral Cortex/cytology , Female , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neurons , Parvalbumins/physiology , Rats , Rats, Sprague-Dawley , Species Specificity , Vasoactive Intestinal Peptide/physiology
11.
Elife ; 92020 04 28.
Article in English | MEDLINE | ID: mdl-32343226

ABSTRACT

Rett Syndrome is a devastating neurodevelopmental disorder resulting from mutations in the gene MECP2. Mutations of Mecp2 that are restricted to GABAergic cell types largely replicate the behavioral phenotypes associated with mouse models of Rett Syndrome, suggesting a pathophysiological role for inhibitory interneurons. Recent work has suggested that vasoactive intestinal peptide-expressing (VIP) interneurons may play a critical role in the proper development and function of cortical circuits, making them a potential key point of vulnerability in neurodevelopmental disorders. However, little is known about the role of VIP interneurons in Rett Syndrome. Here we find that loss of MeCP2 specifically from VIP interneurons replicates key neural and behavioral phenotypes observed following global Mecp2 loss of function.


Subject(s)
Interneurons/physiology , Methyl-CpG-Binding Protein 2/metabolism , Rett Syndrome/genetics , Vasoactive Intestinal Peptide/metabolism , Animals , Disease Models, Animal , GABAergic Neurons/physiology , Methyl-CpG-Binding Protein 2/genetics , Mice, Transgenic , Rett Syndrome/physiopathology
12.
Neuron ; 102(5): 905-907, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31170396

ABSTRACT

In this issue, Wester et al. (2019) examine the obligate relationship between cortical interneurons and pyramidal neurons. By genetically converting superficial IT pyramidal cells into PT-like deep-layer pyramidal cells, they alter the position, connectivity, and gene expression within CGE-derived interneurons.


Subject(s)
Neocortex , Interneurons , Pyramidal Cells
13.
Curr Opin Neurobiol ; 52: 172-181, 2018 10.
Article in English | MEDLINE | ID: mdl-30064117

ABSTRACT

In this review, we explore how contextual modulations of sensory processing are implemented within the local cortical circuit. We focus on contextual influences of global arousal state (e.g. how alert am I?), sensory predictions (e.g. which stimuli do I expect?), and top-down attention (what is relevant to me?). We review recent literature suggesting that these operations are implemented throughout sensory cortices, and are mediated by excitatory and inhibitory local circuits. By focusing on the circuit mechanisms of contextual modulation operations, we may begin to understand how mutations in GABAergic interneurons and alterations in neuromodulatory signaling lead to specific deficits of information processing in neuropsychiatric disease.


Subject(s)
Arousal/physiology , GABAergic Neurons/physiology , Interneurons/physiology , Nerve Net/physiology , Neural Pathways/physiology , Sensorimotor Cortex/physiology , Animals , GABAergic Neurons/metabolism , Humans , Interneurons/metabolism , Nerve Net/metabolism , Neural Pathways/metabolism , Sensorimotor Cortex/metabolism
14.
Nature ; 555(7697): 457-462, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29513653

ABSTRACT

Diverse subsets of cortical interneurons have vital roles in higher-order brain functions. To investigate how this diversity is generated, here we used single-cell RNA sequencing to profile the transcriptomes of mouse cells collected along a developmental time course. Heterogeneity within mitotic progenitors in the ganglionic eminences is driven by a highly conserved maturation trajectory, alongside eminence-specific transcription factor expression that seeds the emergence of later diversity. Upon becoming postmitotic, progenitors diverge and differentiate into transcriptionally distinct states, including an interneuron precursor state. By integrating datasets across developmental time points, we identified shared sources of transcriptomic heterogeneity between adult interneurons and their precursors, and uncovered the embryonic emergence of cardinal interneuron subtypes. Our analysis revealed that the transcription factor Mef2c, which is linked to various neuropsychiatric and neurodevelopmental disorders, delineates early precursors of parvalbumin-expressing neurons, and is essential for their development. These findings shed new light on the molecular diversification of early inhibitory precursors, and identify gene modules that may influence the specification of human interneuron subtypes.


Subject(s)
Cell Differentiation , Interneurons/cytology , Interneurons/physiology , Neural Inhibition , Visual Cortex/cytology , Animals , Cell Differentiation/genetics , Embryo, Mammalian/cytology , Female , Ganglia/cytology , Ganglia/metabolism , Gene Expression Profiling , Humans , MEF2 Transcription Factors/metabolism , Male , Mice , Mitosis/genetics , Parvalbumins/metabolism , RNA, Small Cytoplasmic/genetics , Single-Cell Analysis
15.
Neuron ; 95(4): 884-895.e9, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28817803

ABSTRACT

GABAergic interneurons play important roles in cortical circuit development. However, there are multiple populations of interneurons and their respective developmental contributions remain poorly explored. Neuregulin 1 (NRG1) and its interneuron-specific receptor ERBB4 are critical genes for interneuron maturation. Using a conditional ErbB4 deletion, we tested the role of vasoactive intestinal peptide (VIP)-expressing interneurons in the postnatal maturation of cortical circuits in vivo. ErbB4 removal from VIP interneurons during development leads to changes in their activity, along with severe dysregulation of cortical temporal organization and state dependence. These alterations emerge during adolescence, and mature animals in which VIP interneurons lack ErbB4 exhibit reduced cortical responses to sensory stimuli and impaired sensory learning. Our data support a key role for VIP interneurons in cortical circuit development and suggest a possible contribution to pathophysiology in neurodevelopmental disorders. These findings provide a new perspective on the role of GABAergic interneuron diversity in cortical development. VIDEO ABSTRACT.


Subject(s)
Cerebral Cortex/pathology , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Gene Expression Regulation, Developmental/genetics , Interneurons/pathology , Vasoactive Intestinal Peptide/metabolism , Action Potentials/physiology , Animals , Animals, Newborn , Calcium/metabolism , Disease Models, Animal , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Vitro Techniques , Interneurons/metabolism , Mice , Mice, Transgenic , Patch-Clamp Techniques , Photic Stimulation , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Signal Detection, Psychological/physiology , Somatostatin/genetics , Somatostatin/metabolism , Spectrum Analysis , Vasoactive Intestinal Peptide/genetics , Visual Pathways/growth & development , Visual Pathways/pathology
16.
Neuron ; 87(6): 1143-1161, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26402600

ABSTRACT

The state of the brain and body constantly varies on rapid and slow timescales. These variations contribute to the apparent noisiness of sensory responses at both the neural and the behavioral level. Recent investigations of rapid state changes in awake, behaving animals have provided insight into the mechanisms by which optimal sensory encoding and behavioral performance are achieved. Fluctuations in state, as indexed by pupillometry, impact both the "signal" (sensory evoked response) and the "noise" (spontaneous activity) of cortical responses. By taking these fluctuations into account, neural response (co)variability is significantly reduced, revealing the brain to be more reliable and predictable than previously thought.


Subject(s)
Brain/physiology , Motor Activity/physiology , Nerve Net/physiology , Neurons/physiology , Wakefulness/physiology , Action Potentials/physiology , Animals , Humans , Time Factors
17.
Neuron ; 86(3): 740-54, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25892300

ABSTRACT

Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits.


Subject(s)
Arousal , Locomotion/physiology , Signal Detection, Psychological/physiology , Visual Cortex/physiology , Wakefulness , Action Potentials/physiology , Animals , Computer Simulation , Fourier Analysis , Male , Mice , Pupil/physiology , Visual Pathways/physiology
18.
Cereb Cortex ; 25(7): 1842-57, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24451661

ABSTRACT

Complex and precisely orchestrated genetic programs contribute to the generation, migration, and maturation of cortical GABAergic interneurons (cIN). Yet, little is known about the signals that mediate the rapid alterations in gene expression that are required for cINs to transit through a series of developmental steps leading to their mature properties in the cortex. Here, we investigated the function of post-transcriptional regulation of gene expression by microRNAs on the development of cIN precursors. We find that conditional removal of the RNAseIII enzyme Dicer reduces the number of cINs in the adult mouse. Dicer is further necessary for the morphological and molecular maturation of cINs. Loss of mature miRNAs affects cINs development by impairing migration and differentiation of this cell type, while leaving proliferation of progenitors unperturbed. These developmental defects closely matched the abnormal expression of molecules involved in apoptosis and neuronal specification. In addition, we identified several miRNAs that are selectively upregulated in the postmitotic cINs, consistent with a role of miRNAs in the post-transcriptional control of the differentiation and apoptotic programs essential for cIN maturation. Thus, our results indicate that cIN progenitors require Dicer-dependent mechanisms to fine-tune the migration and maturation of cINs.


Subject(s)
Cell Survival/physiology , Cerebral Cortex/physiology , DEAD-box RNA Helicases/metabolism , GABAergic Neurons/physiology , Interneurons/physiology , MicroRNAs/metabolism , Ribonuclease III/metabolism , Animals , Apoptosis/physiology , Cell Count , Cell Proliferation/physiology , Cerebral Cortex/growth & development , DEAD-box RNA Helicases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/physiology , Nuclear Proteins/metabolism , Ribonuclease III/genetics , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism
19.
J Neurosci ; 32(49): 17690-705, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23223290

ABSTRACT

Although previous work identified transcription factors crucial for the specification and migration of parvalbumin (PV)-expressing and somatostatin (SST)-expressing interneurons, the intrinsic factors required for the terminal differentiation, connectivity, and survival of these cell types remain uncharacterized. Here we demonstrate that, within subpopulations of cortical interneurons, Satb1 (special AT-rich binding protein) promotes terminal differentiation, connectivity, and survival in interneurons that express PV and SST. We find that conditional removal of Satb1 in mouse interneurons results in the loss of a majority of SST-expressing cells across all cortical layers, as well as some PV-expressing cells in layers IV and VI, by postnatal day 21. SST-expressing cells initially migrate to the cortex in Satb1 mutant mice, but receive reduced levels of afferent input and begin to die during the first postnatal week. Electrophysiological characterization indicates that loss of Satb1 function in interneurons results in a loss of functional inhibition of excitatory principal cells. These data suggest that Satb1 is required for medial ganglionic eminence-derived interneuron differentiation, connectivity, and survival.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/growth & development , Interneurons/physiology , Matrix Attachment Region Binding Proteins/physiology , Presynaptic Terminals/physiology , Animals , Brain Waves/physiology , Cell Movement/physiology , Cell Survival/physiology , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Excitatory Postsynaptic Potentials/physiology , Gene Expression Regulation, Developmental/physiology , Interneurons/cytology , Interneurons/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/physiology , Parvalbumins/metabolism , Presynaptic Terminals/metabolism , Somatostatin/metabolism , Transcription Factors/metabolism , Transcription Factors/physiology
20.
Article in English | MEDLINE | ID: mdl-22787442

ABSTRACT

Inhibitory neurons are critical for regulating effective transfer of sensory information and network stability. The precision of inhibitory function likely derives from the existence of a variety of interneuron subtypes. Their specification is largely dependent on the locale of origin of interneuron progenitors. Neocortical and hippocampal inhibitory neurons originate the subpallium, namely in the medial and caudal ganglionic eminences (MGE and CGE), and in the preoptic area (POA). In the hippocampus, neuronal nitric oxide synthase (nNOS)-expressing cells constitute a numerically large GABAergic interneuron population. On the contrary, nNOS-expressing inhibitory neurons constitute the smallest of the known neocortical GABAergic neuronal subtypes. The origins of most neocortical GABAergic neuron subtypes have been thoroughly investigated, however, very little is known about the origin of, or the genetic programs underlying the development of nNOS neurons. Here, we show that the vast majority of neocortical nNOS-expressing neurons arise from the MGE rather than the CGE. Regarding their molecular signature, virtually all neocortical nNOS neurons co-express the neuropeptides somatostatin (SST) and neuropeptide Y (NPY), and about half of them express the calcium-binding protein calretinin (CR). nNOS neurons thus constitute a small cohort of the MGE-derived SST-expressing population of cortical inhibitory neurons. Finally, we show that conditional removal of the transcription factor Sox6 in MGE-derived GABAergic cortical neurons results in an absence of SST and CR expression, as well as reduced expression of nNOS in neocortical nNOS neurons. Based on their respective abundance, origin and molecular signature, our results suggest that neocortical and hippocampal nNOS GABAergic neurons likely subserve different functions and have very different physiological relevance in these two cortical structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...