Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Chem Biol ; 81: 102501, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024686

ABSTRACT

As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.

2.
ACS Chem Biol ; 19(6): 1351-1365, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38836425

ABSTRACT

A major obstacle in biotherapeutics development is maximizing cell penetration. Ideally, assays would allow for optimization of cell penetration in the cell type of interest early in the drug development process. However, few assays exist to compare cell penetration across different cell types independent of drug function. In this work, we applied the chloroalkane penetration assay (CAPA) in seven mammalian cell lines as well as primary cells. Careful controls were used to ensure that data could be compared across cell lines. We compared the nuclear penetration of several peptides and drug-like oligonucleotides and saw significant differences among the cell lines. To help explain these differences, we quantified the relative activities of endocytosis pathways in these cell lines and correlated them with the penetration data. Based on these results, we knocked down clathrin in a cell line with an efficient permeability profile and observed reduced penetration of peptides but not oligonucleotides. Finally, we used small-molecule endosomal escape enhancers and observed enhancement of cell penetration of some oligonucleotides, but only in some of the cell lines tested. CAPA data provide valuable points of comparison among different cell lines, including primary cells, for evaluating the cell penetration of various classes of peptides and oligonucleotides.


Subject(s)
Endocytosis , Humans , Cell Line , Cell Membrane Permeability , Cell-Penetrating Peptides/metabolism , Clathrin/metabolism , Oligonucleotides/metabolism , Peptides/metabolism , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/metabolism
3.
RSC Chem Biol ; 5(4): 328-334, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38576720

ABSTRACT

Passive membrane permeability is an important property in drug discovery and biological probe design. To elucidate the cell-penetrating ability of oxadiazole-containing (Odz) peptides, we employed the Chloroalkane Penetration Assay. The present study demonstrates that Odz cyclic peptides can be highly cell-penetrant depending on the position of specific side chains and the chloroalkane tag. Solution NMR shows that Odz cyclic peptides adopt a ß-turn conformation. However, despite observing high cell penetration, we observed low passive permeability in experiments with artificial membranes. These findings highlight the complexity of controlling cell penetration for conformationally sensitive macrocycles and suggest that Odz cyclic peptides may provide a framework for designing cell-penetrant cyclic peptides.

4.
Chembiochem ; 24(9): e202300009, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36791388

ABSTRACT

A major limitation for the development of more effective oligonucleotide therapeutics has been a lack of understanding of their penetration into the cytosol. While prior work has shown how backbone modifications affect cytosolic penetration, it is unclear how cytosolic penetration is affected by other features including base composition, base sequence, length, and degree of secondary structure. We have applied the chloroalkane penetration assay, which exclusively reports on material that reaches the cytosol, to investigate the effects of these characteristics on the cytosolic uptake of druglike oligonucleotides. We found that base composition and base sequence had moderate effects, while length did not correlate directly with the degree of cytosolic penetration. Investigating further, we found that the degree of secondary structure had the largest and most predictable correlations with cytosolic penetration. These methods and observations add a layer of design for maximizing the efficacy of new oligonucleotide therapeutics.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Oligonucleotides, Antisense/chemistry , Biological Transport , Cytosol/metabolism
5.
J Am Chem Soc ; 144(32): 14687-14697, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35917476

ABSTRACT

The LC3/GABARAP family of proteins is involved in nearly every stage of autophagy. Inhibition of LC3/GABARAP proteins is a promising approach to blocking autophagy, which sensitizes advanced cancers to DNA-damaging chemotherapy. Here, we report the structure-based design of stapled peptides that inhibit GABARAP with nanomolar affinities. Small changes in staple structure produced stapled peptides with very different binding modes and functional differences in LC3/GABARAP paralog selectivity, ranging from highly GABARAP-specific to broad inhibition of both subfamilies. The stapled peptides exhibited considerable cytosolic penetration and resistance to biological degradation. They also reduced autophagic flux in cultured ovarian cancer cells and sensitized ovarian cancer cells to cisplatin. These small, potent stapled peptides represent promising autophagy-modulating compounds that can be developed as novel cancer therapeutics and novel mediators of targeted protein degradation.


Subject(s)
Microtubule-Associated Proteins , Ovarian Neoplasms , Apoptosis Regulatory Proteins/metabolism , Autophagy , Female , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Peptides/pharmacology
6.
ACS Chem Biol ; 17(2): 348-360, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35034446

ABSTRACT

A major obstacle in the development of effective oligonucleotide therapeutics is a lack of understanding about their cytosolic and nuclear penetration. To address this problem, we have applied the chloroalkane penetration assay (CAPA) to oligonucleotide therapeutics. CAPA was used to quantitate cytosolic delivery of antisense oligonucleotides (ASOs) and siRNAs and to explore the effects of a wide variety of commonly used chemical modifications and their patterning. We evaluated potential artifacts by exploring the effects of serum, comparing activity data and CAPA data, and assessing the impact of the chloroalkane tag and its linker chemistry. We also used viral transduction to expand CAPA to the nuclear compartment in epithelial and neuronal cell lines. Using this enhanced method, we measured a 48-h time course of nuclear penetration for a panel of chemically diverse modified RNAs. Moving forward, CAPA will be a useful tool for deconvoluting the complex processes of endosomal uptake, escape into the cytosol, and subcellular trafficking of oligonucleotide therapeutics in therapeutically relevant cell types.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Cell Nucleus , Cytosol/metabolism , Oligonucleotides/metabolism , Oligonucleotides, Antisense/metabolism , RNA, Small Interfering/metabolism
7.
Chem Sci ; 12(10): 3526-3543, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-34163626

ABSTRACT

In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.

8.
Nucleic Acids Res ; 48(14): 7623-7639, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32644123

ABSTRACT

RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.


Subject(s)
RNA/metabolism , RNA/therapeutic use , Aptamers, Nucleotide/therapeutic use , Cell Nucleus/metabolism , Cytosol/metabolism , Genetic Diseases, Inborn/drug therapy , Genetic Techniques , Humans , MicroRNAs/therapeutic use , Microscopy, Electron , Oligonucleotides, Antisense/therapeutic use , RNA/chemistry , RNA/pharmacokinetics , RNA, Small Interfering/therapeutic use , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...