Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Phys Ther ; 25(1): 56-61, 2021.
Article in English | MEDLINE | ID: mdl-32070652

ABSTRACT

OBJECTIVE: Warm water immersion therapy (WWIT) has been widely used in the treatment of various clinical conditions, with analgesic and anti-inflammatory effects. However, its mechanism of action has not been fully investigated. The present study analyzed the role of spinal inhibitory neuroreceptors in the antihyperalgesic effect of WWIT in an experimental model of inflammatory pain. METHODS: Mice were injected with complete Freund's adjuvant (CFA; intraplantar [i.pl.]). Paw withdrawal frequency to mechanical stimuli (von Frey test) was used to determine: (1) the effect of intrathecal (i.t.) preadministration of naloxone (a non-selective opioid receptor antagonist; 5 µg/5 µl), (2); AM281 (a selective cannabinoid receptor type 1 [CB1] antagonist; 2 µg/5 µl), (3); and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; a selective adenosine A1 receptor antagonist; 10 nmol/5 µl), on the antihyperalgesic (pain-relieving) effect of WWIT against CFA-induced hyperalgesia. RESULTS: Intrathecal naloxone, AM281, and DPCPX significantly prevented the antihyperalgesic effect of WWIT. This study suggests the involvement of spinal (central) receptors in the antihyperalgesic effect of WWIT in a model of inflammatory pain. CONCLUSIONS: Taken together, these results suggest that opioid, CB1, and A1 spinal receptors might contribute to the pain-relieving effect of WWIT.


Subject(s)
Naloxone/adverse effects , Sensory Receptor Cells/drug effects , Animals , Freund's Adjuvant/adverse effects , Hyperalgesia/physiopathology , Immersion , Inflammation , Mice , Narcotic Antagonists/adverse effects , Pain Management , Water , Xanthines/chemistry , Xanthines/pharmacology
2.
J Integr Med ; 16(6): 396-403, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30139655

ABSTRACT

OBJECTIVE: The present study aimed to evaluate the analgesic and anti-inflammatory effects of far infrared-emitting ceramics (cFIRs) in a model of persistent inflammatory hyperalgesia and to elucidate the possible mechanisms of these effects. METHODS: Mice were injected with complete Freund's adjuvant (CFA) and treated with cFIRs via placement on a pad impregnated with cFIRs on the bottom of the housing unit for different periods of time. Mice underwent mechanical hyperalgesia and edema assessments, and tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and IL-10 levels were measured. Twenty-four hours after CFA injection and 30 min before cFIR treatment, mice were pretreated with a nonselective adenosinergic antagonist, caffeine, the selective adenosine receptor A1 antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), the selective cannabinoid receptor type 1 antagonist, AM281, the selective cannabinoid receptor type 2 antagonist, AM630, or the nonselective opioid receptor antagonist, naloxone, and mechanical hyperalgesia was assessed. RESULTS: cFIRs statistically (P < 0.05) decreased CFA-induced mechanical hyperalgesia ((82.86 ±â€¯5.21)% in control group vs (56.67 ±â€¯9.54)% in cFIR group) and edema ((1699.0 ±â€¯77.8) µm in control group vs (988.7 ±â€¯107.6) µm in cFIR group). cFIRs statistically (P < 0.05) reduced TNF-α ((0.478 ±â€¯0.072) pg/mg of protein in control group vs (0.273 ±â€¯0.055) pg/mg of protein in cFIR group) and IL-1ß ((95.81 ±â€¯3.95) pg/mg of protein in control group vs (80.61 ±â€¯4.71) pg/mg of protein in cFIR group) levels and statistically (P < 0.05) increased IL-10 ((18.32 ±â€¯0.78) pg/mg of protein in control group vs (25.89 ±â€¯1.23) pg/mg of protein in cFIR group) levels in post-CFA-injected paws. Peripheral pre-administration of inhibitory neuroreceptor antagonists (caffeine, DPCPX, AM281, AM630 and naloxone) prevented the analgesic effects of cFIRs (P < 0.05). CONCLUSION: These data provide additional support for the use of cFIRs in the treatment of painful inflammatory conditions and contribute to our understanding of the neurobiological mechanisms of the therapeutic effects of cFIRs.


Subject(s)
Ceramics/chemistry , Cytokines/immunology , Freund's Adjuvant/adverse effects , Hyperalgesia/immunology , Hyperalgesia/therapy , Sensory Receptor Cells/immunology , Animals , Ceramics/radiation effects , Cytokines/genetics , Disease Models, Animal , Humans , Hyperalgesia/chemically induced , Infrared Rays , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Male , Mice , Pain Management , Peripheral Nerves/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
3.
J Ethnopharmacol ; 210: 477-484, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-28917977

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cedar is part of the phylum of conifers, and it's essential oil has been used for therapeutic purposes since ancient times. In our previous study, we have demonstrated that the inhalation of the Cedrus atlantica essential oil (CaEO) induces an antihyperalgesic effect in a model of postoperative pain. But the mechanism that underlies this effect is not yet fully known. AIM OF THE STUDY: This study investigates the involvement of the endocannabinoid system in the antihyperalgesic effect produced by the inhalation of CaEO in a post operative pain model. MATERIALS AND METHODS: Male Swiss mice (25-35±2g) were subjected to plantar incision. To assess the involvement of the endocannabinoid system, two different approaches were made: (1) by administering antagonists to the CB1 and CB2 receptors in different sites (intraperitoneal [i.p.], intraplantar [i.pl.] and intrathecal [i.t.]) and (2) by assessing the synergic effect of the inhalation of sub-effective doses of CaEO, Fatty acid hydrolase (FAAH) and Monoacylglycerol lipase (MAGL), and endocannabinoid degradation inhibitors (URB937 and JZL184, respectively). RESULTS: The antihyperalgesic effect of CaEO inhalation was prevented by pretreatment with AM281 or AM630 given by i.p. and i.t., but not i.pl. Additionally, in mice pretreated with FAAH or the MAGL inhibitors, the antihyperalgesic effect of CaEO inhalation was significantly longer, which demonstrates the involvement of the endocannabinoid system in the antihyperalgesic effect of CaEO inhalation in a preclinical model of postoperative pain. CONCLUSIONS: The present study shows that CaEO inhalation exerts an antihyperalgesic effect, possibly by the activation of the endocannabinoid system in a preclinical model of postoperative pain. It could be a new alternative to treat pain in a clinical environment.


Subject(s)
Cedrus/chemistry , Endocannabinoids/metabolism , Oils, Volatile/pharmacology , Pain, Postoperative/drug therapy , Administration, Inhalation , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Mice , Oils, Volatile/administration & dosage , Oils, Volatile/isolation & purification , Pain, Postoperative/physiopathology , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism
4.
Mol Neurobiol ; 55(7): 6155-6168, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29250715

ABSTRACT

Although training programs with regular eccentric (ECC) exercise are more commonly used for improving muscular strength and mobility, ECC exercise effects upon functional recovery of the sciatic nerve has not yet been determined. After sciatic nerve crush, different mice groups were subjected to run on the treadmill for 30 min at a speed of 6, 10, or 14 m/min with - 16° slope, 5 days per week, over 8 weeks. During the training time, neuropathic pain-like behavior (mechanical and cold hyperalgesia) was assessed and functional recovery was determined with the grip strength test and the Sciatic Functional and Static indexes (SFI and SSI). After 9 weeks, triceps surae muscle weight and morphological alterations were assessed. Tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), interleukin-4 (IL-4), interleukin-1Ra (IL-1Ra), insulin-like growth factor-1 (IGF-1) levels, and markers pro- and anti-inflammatory and regeneration, respectively, were quantified in the muscle and sciatic nerve on day 14 post-crushing. Exercised groups presented less neuropathic pain-like behavior and better functional recovery than non-exercised groups. Biochemically, ECC exercise reduced TNF-α increase in the muscle. ECC exercise increased sciatic nerve IGF-1 levels in sciatic nerve crush-subjected animals. These findings provide new evidence indicating that treatment with ECC might be a potential approach for neuropathy induced by peripheral nerve injury.


Subject(s)
Behavior, Animal , Insulin-Like Growth Factor I/metabolism , Motor Activity , Neuralgia/pathology , Neuralgia/physiopathology , Physical Conditioning, Animal , Recovery of Function , Trauma, Nervous System/physiopathology , Animals , Cytokines/metabolism , Hyperalgesia/metabolism , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Inflammation Mediators/metabolism , Male , Nerve Regeneration , Neuralgia/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Time Factors , Trauma, Nervous System/metabolism , Trauma, Nervous System/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...