Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 92(10): 1468, 2008 Oct.
Article in English | MEDLINE | ID: mdl-30769556

ABSTRACT

Peanut (Arachis hypogaea L.) is grown extensively in several counties in West Texas. Sclerotinia blight, caused by the soilborne fungus Sclerotinia minor Jagger, is an increasingly important disease throughout this region. In September of 2007, diseased peanut plants (cv. Tamrun OL02) exhibiting symptoms of Sclerotinia blight (2,4) were collected from a commercial farm in Gaines County during a regional survey. Infected stem sections were surface disinfested in 0.5% sodium hypochlorite for 1 min, air dried, and placed in petri dishes containing water agar. Hyphae were subsequently transferred to petri dishes containing potato dextrose agar (PDA) after 3 days of incubation at room temperature. Pure cultures formed abundant, aerial, white mycelia, which later became darkly pigmented. Black, spherical to elongated sclerotia, 3.8 ± 0.8 mm, formed on the outer edge of petri dishes after 1 week. These characteristics are consistent with S. sclerotiorum (Lib.) de Bary (1,2). Pathogenicity tests were conducted by inoculating stems of greenhouse-grown peanut plants (cvs. Tamrun OL02, n = 4 and Flavorrunner 458, n = 4) with PDA plugs containing S. sclerotiorum. Mounting pins were used to create a shallow wound and affix inoculum plugs to stems. Control plants (n = 4) were inoculated with noncolonized PDA plugs. Plants were placed in a dew chamber at 20°C and 95% relative humidity in a randomized complete block design. The experiment was conducted two times. Symptoms identical to those observed on the original plant specimens were observed after 3 days on all inoculated plants; the controls remained healthy. Darkly pigmented cultures of S. sclerotiorum were consistently reisolated from all symptomatic stem sections. Fungal DNA was extracted from mycelia and sclerotia with a Qiagen DNeasy Plant Mini kit (Valencia, CA) and amplified by PCR using three S. sclerotiorum-specific primer pairs (3). PCR products for three replicates (two from mycelia and one from sclerotia) were sequenced and subjected to a NCBI BLAST search of highly similar sequences (megablast). The BLAST search revealed that our sequences are highly similar only with reported sequences of S. sclerotiorum. Sequences generated from three primer pairs in this study were 99, 95, and 95% homologous to S. sclerotiorum Accessions Nos. AF377925.1, AF377919.1, and AF377904.1 over 373, 376, and 300 bp of aligned sequence, respectively. Results from the pathogenicity tests and molecular study confirm that the S. sclerotiorum isolate obtained in this study is capable of inciting Sclerotinia blight of peanut. While S. minor is the primary causal agent of the disease, recent reports indicate that S. sclerotiorum is becoming more prevalent throughout the peanut-producing regions of the United States (2,4), and must therefore be considered in disease diagnosis. References: (1) L. M. Kohn. Phytopathology 69:881, 1979. (2) S. Sanogo and N. Puppala. Plant Dis. 91:1077, 2007. (3) C. Sirjusingh and L. M. Kohn. Mol. Ecol. Notes 1:267, 2001. (4) J. E. Woodward et al. Plant Dis. 90:111, 2006.

2.
Plant Dis ; 92(3): 482, 2008 Mar.
Article in English | MEDLINE | ID: mdl-30769701

ABSTRACT

Sclerotinia blight, caused by the soilborne fungus Sclerotinia minor Jagger, is a major disease of peanut (Arachis hypogaea L.) in parts of west Texas. Previous reports have indicated that annual weed species may serve as collateral hosts for S. minor (2). Several Ipomoea spp. are commonly found in peanut fields throughout the region. In September of 2007, Ipomoea hederacea and I. coccinea plants with bleached, shredded stems, and signs of black sclerotia were collected from a field known to be infested with S. minor. Symptomatic stem sections were rinsed in tap water, surface disinfested in 0.5% sodium hypochlorite for 1 min, air dried, and plated on potato dextrose agar (PDA). Pure cultures of S. minor consisting of white, fluffy mycelia and small (<2 mm), black, irregular sclerotia were consistently recovered. Pathogenicity tests were conducted by wound-inoculating healthy I. hederacea and I. coccinea transplants (n = 3) with agar plugs obtained from the edges of actively growing S. minor cultures. Plants were incubated in a dew chamber at 20°C and 95% relative humidity for 5 days. Plants inoculated with sterile PDA plugs served as controls (n = 3). A similar test was conducted using the susceptible peanut cultivar Flavorunner 458. Characteristic symptoms of Sclerotinia blight (3) were observed on all inoculated weed and peanut plants; whereas, the controls remained healthy. Pathogenicity tests were repeated with similar results. Cultures of S. minor were obtained from all symptomatic tissues, fulfilling Koch's postulates. These results indicate that I. hederacea and I. coccinea are additional hosts of S. minor and that sclerotia produced on infected plants can significantly augment soil inoculum. S. minor has been observed to infect I. batatas seedlings in New Jersey (1); however, this to our knowledge is the first report of S. minor infecting Ipomoea spp. in Texas. Therefore, weed management should inevitability be a part of disease management strategies for the control of Sclerotinia blight in peanut. References: (1) Anonymous. Index of Plant Diseases in the United States. USDA Handb. No. 165, 1960. (2) J. E. Hollowell et al. Plant Dis. 87:197, 2003. (3) D. M. Porter and H. A. Melouk. Sclerotinia blight. Page 34 in: Compendium of Peanut Diseases. 2nd ed. N. Kokalis-Burelle et al., eds. The American Phytopathologicial Society, St. Paul, MN, 1997.

SELECTION OF CITATIONS
SEARCH DETAIL
...