Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108205

ABSTRACT

Hyperbaric oxygen therapy (HBOT) is the clinical application of oxygen at pressures higher than atmospheric pressure. HBOT has been effectively used to manage diverse clinical pathologies, such as non-healing diabetic ulcers. The aim of the present study was to analyse the effects of HBOT on the plasma oxidative and inflammation biomarkers and growth factors in patients with chronic diabetic wounds. The participants received 20 HBOT sessions (five sessions/week), and blood samples were obtained at sessions 1, 5 and 20, before and 2 h after the HBOT. An additional (control) blood sample was collected 28 days after wound recovery. No significant differences were evident in haematological parameters, whereas the biochemical parameters progressively decreased, which was significant for creatine phosphokinase (CPK) and aspartate aminotransferase (AST). The pro-inflammatory mediators, tumour necrosis factor alpha (TNF-α) and interleukin 1ß (IL-1ß), progressively decreased throughout the treatments. Biomarkers of oxidative stress--plasma protein levels of catalase, extracellular superoxide dismutase, myeloperoxidase, xanthine oxidase, malondialdehyde (MDA) levels and protein carbonyls--were reduced in accordance with wound healing. Plasma levels of growth factors--platelet-derived growth factor (PDFG), transforming growth factor ß (TGF-ß) and hypoxia-inducible factor 1-alpha (HIF-1α)-- were increased as a consequence of HBOT and reduced 28 days after complete wound healing, whereas matrix metallopeptidase 9 (MMP9) progressively decreased with the HBOT. In conclusion, HBOT reduced oxidative and pro-inflammatory mediators, and may participate in activating healing, angiogenesis and vascular tone regulation by increasing the release of growth factors.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Hyperbaric Oxygenation , Humans , Diabetic Foot/therapy , Wound Healing , Oxidative Stress , Inflammation/therapy , Intercellular Signaling Peptides and Proteins/pharmacology , Biomarkers , Diabetes Mellitus/therapy
2.
Curr Pharm Des ; 25(15): 1682-1693, 2019.
Article in English | MEDLINE | ID: mdl-31269879

ABSTRACT

Chronic and non-healing wounds, especially diabetic foot ulcers and radiation injuries, imply remarkable morbidity with a significant effect on the quality of life and a high sanitary cost. The management of these wounds requires complex actions such as surgical debris, antibiotic treatment, dressings and even revascularization. These wounds are characterized by poor oxygen supply resulting in inadequate oxygenation of the affected tissue. The adjuvant treatment with hyperbaric oxygen therapy (HBOT) may increase tissue oxygenation favoring the healing of wounds which do not respond to the usual clinical care. The increase in the partial pressure of oxygen contributes to cover the energy demands necessary for the healing process and reduces the incidence of infections. Moreover, the increase in oxygen leads to the production of reactive species with hormetic activity, acting on signaling pathways that modulate the synthesis of inflammation mediators, antioxidants and growth factors which can contribute to the healing process. Studies performed with cell cultures and in animal models seem to demonstrate the beneficial effects of HBOT. However, clinical trials do not show such conclusive results; thus, additional randomized placebo-controlled studies are necessary to determine the real efficacy of HBOT and the mechanism of action for various types of wounds.


Subject(s)
Hyperbaric Oxygenation , Oxygen/therapeutic use , Wound Healing , Animals , Cells, Cultured , Diabetic Foot/therapy , Humans , Observational Studies as Topic , Randomized Controlled Trials as Topic
3.
PLoS One ; 11(9): e0163371, 2016.
Article in English | MEDLINE | ID: mdl-27654305

ABSTRACT

We analyzed the effects of the clinical hyperbaric oxygen therapy (HBOT) on the plasma antioxidant response and levels of endothelin-1, Interleukine-6 (IL-6) and vascular endothelial growth factor (VEGF) in patients with chronic wounds (20.2±10.0 months without healing). They received 20 HBOT sessions (five sessions/week), and blood samples were obtained at sessions 1, 5 and 20 before and 2 hours after the HBOT. An additional blood sample was collected 1 month after wound recovery. Serum creatine kinase activity decreased progressively in accordance with the wound healing. Plasma catalase activity significantly increased after the first and fifth sessions of HBOT. Plasma myeloperoxidase activity reported significantly lower values after sessions. Plasma VEGF and IL-6 increased after sessions. Endothelin-1 levels were progressively decreasing during the HBOT, being significant at the session 20. Plasma malondialdehyde concentration was significantly reduced at the last session. Both creatine kinase activity and malondialdehyde levels were maintained lower 1 month after wound recovery respect to initial values. In conclusion, HBOT enhanced the plasma antioxidant defenses and may contribute to activate the healing resolution, angiogenesis and vascular tone regulation by increasing the VEGF and IL-6 release and the endothelin-1 decrease, which may be significant factors in stimulating wound healing.

4.
Physiol Genomics ; 46(17): 647-54, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25005793

ABSTRACT

OBJECTIVE: Scuba diving, characterized by hyperoxia and hyperbaria, could increase reactive oxygen species production which acts as signaling molecules to induce adaptation against oxidative stress. The aim was to study the effects of scuba diving immersion on neutrophil inflammatory response, the induction of oxidative damage, and the NO synthesis. DESIGN: Nine male divers performed a dive at 50 m depth for a total time of 35 min. Blood samples were obtained at rest before the dive, after the dive, and 3 h after the diving session. MEASUREMENTS: Markers of oxidative and nitrosative damage, nitrite, and the gene expression of genes related with the synthesis of nitric oxide and lipid mediators, cytokine synthesis, and inflammation were determined in neutrophils. RESULTS: The mRNA levels of genes related with the inflammatory and immune response of neutrophils, except TNF-α, myeloperoxidase, and toll-like receptor (TLR) 2, significantly increased after the recovery period respect to predive and postdive levels. NF-κB, IL-6, and TLR4 gene expression reported significant differences immediately after diving respect to the predive values. Protein nitrotyrosine levels significantly rose after diving and remained high during recovery, whereas no significant differences were reported in malondialdehyde. Neutrophil nitrite levels as indicative of inducible nitric oxide synthase (iNOS) activity progressively increased after diving and recovery. The iNOS protein levels maintained the basal values in all situations. CONCLUSION: Scuba diving which combines hyperoxia, hyperbaria, and acute exercise induces nitrosative damage with increased nitrotyrosine levels and an inflammatory response in neutrophils.


Subject(s)
Diving/physiology , Gene Expression Regulation , Inflammation/genetics , Neutrophils/immunology , Nitric Oxide/biosynthesis , Adult , Biomarkers/metabolism , Humans , Leukocyte Count , Male , Nitrosation , Oxidative Stress , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...