Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 26(4): 563-574, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36773965

ABSTRACT

Productivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers. We analyse global data on terrestrial vertebrate richness, net primary productivity, fire occurrence (fraction of productivity consumed) and additional influences unrelated to productivity (i.e., historical phylogenetic and area effects) on species richness. For birds, fire is associated with higher diversity, rivalling the effects of productivity on richness, and for mammals, fire's positive association with diversity is even stronger than productivity; for amphibians, in contrast, there are few clear associations. Our findings suggest an underappreciated role for fire in the generation of animal species richness and the conservation of global biodiversity.


Subject(s)
Mammals , Vertebrates , Animals , Phylogeny , Biodiversity , Birds , Amphibians
2.
Glob Chang Biol ; 28(8): 2830-2841, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35090075

ABSTRACT

Bark beetle infestation is a major driver of tree mortality that may be critical for forest persistence under climate change and the forecasted increase of extreme heat and drought episodes. Under this context, the environmental position of host tree populations within the species' climatic niche (central vs. marginal populations) is expected to be a determinant in the dynamics of insect-host systems. Here, we analyzed the recent patterns of bark beetle disturbance and forest resistance across European coniferous forests during the 2010-2018 period. We obtained bark beetle attack and tree mortality data from successive continental-scale forest condition surveys on 130 plots including five host trees and five bark beetle species, and characterized the climatic niche of each species. Then, we analyzed the overall forest resistance and species-specific responses, in terms of bark beetle attack and induced tree mortality, in relation to the distance to the niche optimum of both host tree and beetle species, previous drought events, and plot characteristics. Regional patterns of recent disturbance revealed that forests in central, north, and east of Europe could be at risk under the attack of multivoltine bark beetle species. We found that overall forest resistance to beetle attack was determined by several driving factors, which varied among species responses. Particularly, the environmental position of the affected forest within the host and beetle species' climatic niche and plot characteristics mediated the influence of drought on the resistance to beetle attack. In turn, forest resistance to induced tree mortality was determined exclusively by the maximum intensity and duration of drought events. Our findings highlight the importance of disturbance interactions and suggest that the joint influence of drought events and bark beetle disturbance will threaten the persistence of European coniferous forests, even in those tree populations close to their species' climatic optimum.


Subject(s)
Coleoptera , Tracheophyta , Animals , Coleoptera/physiology , Cycadopsida , Forests , Plant Bark , Trees
3.
Sci Total Environ ; 798: 149308, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34375257

ABSTRACT

Fire and drought are two major agents that shape Mediterranean ecosystems, but their interacting effects on forest resilience have not been yet fully addressed. We used Pinus halepensis to investigate how compound fire-drought regimes determine the success of post-fire regeneration. We measured the density of P.halepensis newly established individuals following fire in forty-three sites along the Spanish east coast, the wetter region of the species distribution. The climatic niche of P.halepensis was characterized by considering their populations across its Spanish distribution range. We used yearly values (1979-2013 period) of accumulated precipitation, mean temperature and the warmest quarter values of these two variables to generate the climatic space or climatic niche occupied by the species. Kernel density estimates were then applied to determine the niche centroid, which would correspond to the species' climatic optimum within its Spanish distribution range. Then, we computed the pre- and post-fire climatic deviations of each sampling site as the difference between site-specific climate conditions respect to the species niche centroid, and assessed their relationship with the success of post-fire regeneration. We found highly variable patterns of post-fire regeneration density of P.halepensis over the studied sites, ranging from 7 to 42,822 tree pines ha-1. Generalized linear models indicated a positive relationship between fire severity and the density of P.halepensis regeneration. Positive temperature deviations - warm conditions - before fire were positively related to pine regeneration. This effect increases under higher fire severity. By contrast, warm temperatures after fire showed a negative effect on the density of pine trees. Positive precipitation deviations - wet conditions - after fire enhanced pine regeneration, while precipitation before fire did not had any significant effect. Though P.halepensis is considered a species adapted to fire and drought, the interaction between these two disturbances can alter the success of its post-fire recovery patterns limiting the species' resilience in the future.


Subject(s)
Fires , Pinus , Droughts , Ecosystem , Forests , Humans , Spain , Trees
4.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Article in English | MEDLINE | ID: mdl-33508887

ABSTRACT

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Subject(s)
Ecosystem , Trees , Climate Change , Cold Temperature , Temperature
5.
Proc Natl Acad Sci U S A ; 117(47): 29720-29729, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33139533

ABSTRACT

Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.


Subject(s)
Droughts/mortality , Forests , Biodiversity , Climate Change/mortality , Ecosystem , Species Specificity , Trees/physiology
6.
Science ; 370(6519)2020 11 20.
Article in English | MEDLINE | ID: mdl-33214246

ABSTRACT

Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems. Conservation of Earth's biological diversity will be achieved only by recognizing and responding to the critical role of fire. In the Anthropocene, this requires that conservation planning explicitly includes the combined effects of human activities and fire regimes. Improved forecasts for biodiversity must also integrate the connections among people, fire, and ecosystems. Such integration provides an opportunity for new actions that could revolutionize how society sustains biodiversity in a time of changing fire activity.


Subject(s)
Biodiversity , Climate Change , Extinction, Biological , Wildfires , Animals , Endangered Species , Forecasting , Human Activities , Humans
7.
Glob Chang Biol ; 23(8): 3219-3230, 2017 08.
Article in English | MEDLINE | ID: mdl-28211141

ABSTRACT

Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Canada , Mexico , North America , United States
8.
PLoS One ; 11(4): e0153589, 2016.
Article in English | MEDLINE | ID: mdl-27124597

ABSTRACT

The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.


Subject(s)
Anthropology/statistics & numerical data , Climate Change/statistics & numerical data , Fires/statistics & numerical data , Human Activities/statistics & numerical data , California , Climate , Disasters/statistics & numerical data , Humans , Models, Theoretical , Probability
9.
Nature ; 515(7525): 58-66, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25373675

ABSTRACT

The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.


Subject(s)
Ecosystem , Fires , Australia , Climate Change , Conservation of Natural Resources , Environmental Policy , Fires/prevention & control , Fires/statistics & numerical data , Forests , Geography , Housing , Human Activities , Humans , Mediterranean Region , Population Density , Risk Management , Southwestern United States
10.
Ecol Appl ; 24(8): 1898-907, 2014.
Article in English | MEDLINE | ID: mdl-29185661

ABSTRACT

Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.


Subject(s)
Biodiversity , Climate , Conservation of Natural Resources/legislation & jurisprudence , Federal Government , Geographic Mapping , United States
11.
Am Nat ; 177(5): E136-52, 2011 May.
Article in English | MEDLINE | ID: mdl-21508601

ABSTRACT

Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.


Subject(s)
Ecosystem , Models, Biological , Pinus/growth & development , Selection, Genetic , Trees/growth & development , Altitude , Bayes Theorem , Computer Simulation , Monte Carlo Method , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...