Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 138(24): 7791-5, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27299173

ABSTRACT

While the single-molecule conductance properties of π-conjugated and σ-conjugated systems have been well-studied, little is known regarding the conductance properties of mixed σ-π backbone wires and the factors that control their transport properties. Here we utilize a scanning tunneling microscope-based break-junction technique to study a series of molecular wires with π-σ-π backbone structures, where the π-moiety is an electrode-binding thioanisole ring and the σ-moiety is a triatomic α-ß-α chain composed of C, Si, or Ge atoms. We find that the sequence and composition of group 14 atoms in the α-ß-α chain dictates whether electronic communication between the aryl rings is enhanced or suppressed. Placing heavy atoms at the α-position decreases conductance, whereas placing them at the ß-position increases conductance: for example, the C-Ge-C sequence is over 20 times more conductive than the Ge-C-Ge sequence. Density functional theory calculations reveal that these conductance trends arise from periodic trends (i.e., atomic size, polarizability, and electronegativity) that differ from C to Si to Ge. The periodic trends that control molecular conductance here are the same ones that give rise to the α and ß silicon effects from physical organic chemistry. These findings outline a new molecular design concept for tuning conductance in single-molecule electrical devices.

2.
J Chem Theory Comput ; 11(12): 5888-96, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26642992

ABSTRACT

We report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findings are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.

3.
J Am Chem Soc ; 137(38): 12400-5, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26373928

ABSTRACT

While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction.

4.
Faraday Discuss ; 174: 79-89, 2014.
Article in English | MEDLINE | ID: mdl-25268850

ABSTRACT

We use scanning tunneling microscope break-junction (STM-BJ) measurements to study the low-bias conductance and high-bias current-voltage (IV) characteristics of a series of asymmetric para-meta connected diphenyl-oligoenes. From tight-binding calculations, we determine that the quantum interference features inherent in our molecular design result in a 'through-bond' coupling on the para-side, and through-space coupling on the meta-side. We show that these molecular junctions form single molecule diodes, and show that the rectification results from a difference in the voltage dependence of the coupling strength on the through-bond and the through-space side. The interplay between the applied voltage and the molecule-metal coupling results from the asymmetric polarizability of the conducting orbital under an external field.

5.
J Am Chem Soc ; 136(36): 12556-9, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25121718

ABSTRACT

We study the formation of covalent gold-carbon bonds in benzyltrimethylstannane (C10H16Sn) deposited on Au in ultra-high-vacuum conditions. Through X-ray photoemission spectroscopy and X-ray absorption measurements, we find that the molecule fragments at the Sn-benzyl bond when exposed to Au surfaces at temperatures as low as -110 °C. The resulting benzyl species is stabilized by the presence of Au(111) but only forms covalent Au-C bonds on more reactive Au surfaces like Au(110). We also present spectroscopic proof for the existence of an electronic "gateway" state localized on the Au-C bond that is responsible for its unique electronic properties. Finally, we use DFT-based nudged elastic band calculations to elucidate the crucial role played by the under-coordinated Au surface in the formation of Au-C bonds.

6.
Nano Lett ; 14(5): 2941-5, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24745894

ABSTRACT

We have designed and synthesized five azulene derivatives containing gold-binding groups at different points of connectivity within the azulene core to probe the effects of quantum interference through single-molecule conductance measurements. We compare conducting paths through the 5-membered ring, 7-membered ring, and across the long axis of azulene. We find that changing the points of connectivity in the azulene impacts the optical properties (as determined from UV-vis absorption spectra) and the conductivity. Importantly, we show here that simple models cannot be used to predict quantum interference characteristics of nonalternant hydrocarbons. As an exemplary case, we show that azulene derivatives that are predicted to exhibit destructive interference based on widely accepted atom-counting models show a significant conductance at low biases. Although simple models to predict the low-bias conductance do not hold with all azulene derivatives, we demonstrate that the measured conductance trend for all molecules studied actually agrees with predictions based on the more complete GW calculations for model systems.


Subject(s)
Azulenes/chemistry , Hydrocarbons/chemistry , Azulenes/chemical synthesis , Gold/chemistry , Hydrocarbons/chemical synthesis , Molecular Structure , Quantum Theory
7.
Nano Lett ; 13(12): 6233-7, 2013.
Article in English | MEDLINE | ID: mdl-24274757

ABSTRACT

We demonstrate a new method of achieving rectification in single molecule devices using the high-bias properties of gold-carbon bonds. Our design for molecular rectifiers uses a symmetric, conjugated molecular backbone with a single methylsulfide group linking one end to a gold electrode and a covalent gold-carbon bond at the other end. The gold-carbon bond results in a hybrid gold-molecule "gateway" state pinned close to the Fermi level of one electrode. Through nonequilibrium transport calculations, we show that the energy of this state shifts drastically with applied bias, resulting in rectification at surprisingly low voltages. We use this concept to design and synthesize a family of diodes and demonstrate through single-molecule current-voltage measurements that the rectification ratio can be predictably and efficiently tuned. This result constitutes the first experimental demonstration of a rationally tunable system of single-molecule rectifiers. More generally, the results demonstrate that the high-bias properties of "gateway" states can be used to provide additional functionality to molecular electronic systems.


Subject(s)
Gold/chemistry , Nanotechnology , Silicon/chemistry , Electric Conductivity , Electronics
8.
Nat Commun ; 3: 1086, 2012.
Article in English | MEDLINE | ID: mdl-23011140

ABSTRACT

Understanding the role of intermolecular interaction on through-space charge transfer characteristics in π-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond charge-transfer dynamics in cyclophanes, which consist of two precisely stacked π-systems held together by aliphatic chains. We study two systems, [2,2]paracyclophane (22PCP) and [4,4]paracyclophane (44PCP), with inter-ring separations of 3.0 and 4.0 Å, respectively. We find that charge transfer across the π-coupled system of 44PCP is 20 times slower than in 22PCP. We attribute this difference to the decreased inter-ring electronic coupling in 44PCP. These measurements illustrate the use of core-hole clock spectroscopy as a general tool for quantifying through-space coupling in π-stacked systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...