Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Exp Pharmacol Physiol ; 51(3): e13839, 2024 03.
Article in English | MEDLINE | ID: mdl-38302080

ABSTRACT

Epilepsy is a prevalent neurological disorder characterized by neuronal hypersynchronous discharge in the brain, leading to central nervous system (CNS) dysfunction. Despite the availability of anti-epileptic drugs (AEDs), resistance to AEDs is the greatest challenge in treating epilepsy. The role of sphingosine-1-phosphate-receptor 1 (S1PR1) in drug-resistant epilepsy is unexplored. This study investigated the effects of SEW2871, a potent S1PR1 agonist, on a phenobarbitone (PHB)-resistant pentylenetetrazol (PTZ)-kindled Wistar rat model. We measured the messenger ribonucleic acid (mRNA) expression of multi-drug resistance 1 (MDR1) and multi-drug resistance protein 5 (MRP5) as indicators for drug resistance. Rats received PHB + PTZ for 62 days to develop a drug-resistant epilepsy model. From day 48, SEW2871 (0.25, 0.5, 0.75 mg/kg, intraperitoneally [i.p.]) was administered for 14 days. Seizure scoring, behaviour, oxidative markers like reduced glutathione, catalase, superoxide dismutase, inflammatory markers like interleukin 1 beta tumour necrosis factor alpha, interferon gamma and mRNA expression (MDR1 and MRP5) were assessed, and histopathological assessments were conducted. SEW2871 demonstrated dose-dependent improvements in seizure scoring and neurobehavioral parameters with a reduction in oxidative and inflammation-induced neuronal damage. The S1PR1 agonist also downregulated MDR1 and MRP5 gene expression and significantly decreased the number of dark-stained pyknotic nuclei and increased cell density with neuronal rearrangement in the rat brain hippocampus. These findings suggest that SEW2871 might ameliorate epileptic symptoms by modulating drug resistance through downregulation of MDR1 and MRP5 gene expression.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Oxadiazoles , Thiophenes , Rats , Animals , Pentylenetetrazole/adverse effects , Phenobarbital/adverse effects , Sphingosine-1-Phosphate Receptors , Rats, Wistar , Seizures/chemically induced , Seizures/drug therapy , Epilepsy/chemically induced , Epilepsy/drug therapy , RNA, Messenger
2.
Behav Brain Res ; 458: 114728, 2024 02 26.
Article in English | MEDLINE | ID: mdl-37923221

ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with uncertain etiology and pathophysiology. Several studies revealed that the commonly used animal models like Valproic Acid (VPA) and Propionic Acid (PPA) do not precisely represent the disease as the human patient does. The current study was conducted on different chemically (VPA, PPA, Poly I:C, Dioxin (2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)) & Chlorpyrifos (CPF)) induced ASD-like animal models and validated the best suitable experimental animal model, which would closely resemble with clinical features of the ASD. This validated model might help to explore the pathophysiology of ASD. This study included rat pups prenatally exposed to VPA, PPA, Poly I:C, Dioxin & CPF within GD9 to GD15 doses. The model groups were validated through developmental and behavioral parameters, Gene Expressions, Oxidative Stress, and Pro-inflammatory and Anti-inflammatory cytokines levels. Developmental and neurobehavioral parameters showed significant changes in model groups compared to the control. In oxidative stress parameters and neuro-inflammatory cytokines levels, model groups exhibited high oxidative stress and neuro-inflammation compared to control groups. Gene expression profile of ASD-related genes showed significant downregulation in model groups compared to the control group. Moreover, the Poly I:C group showed more significant results than other model groups. The comparison of available ASD-like experimental animal models showed that the Poly I:C induced model represented the exact pathophysiology of ASD as the human patient does. Poly I:C was reported in the maternal immune system activation via the inflammatory cytokines pathway, altering embryonic development and causing ASD in neonates.


Subject(s)
Autism Spectrum Disorder , Chlorpyrifos , Dioxins , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Rats , Animals , Rats, Wistar , Dioxins/adverse effects , Valproic Acid/pharmacology , Cytokines , Chlorpyrifos/adverse effects , Poly I , Disease Models, Animal , Prenatal Exposure Delayed Effects/chemically induced , Behavior, Animal
3.
Heliyon ; 9(6): e16813, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37303517

ABSTRACT

The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.

4.
Front Aging Neurosci ; 15: 1296919, 2023.
Article in English | MEDLINE | ID: mdl-38173557

ABSTRACT

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and is associated with dementia. Presently, various chemical and environmental agents are used to induce in-vitro models of Alzheimer disease to investigate the efficacy of different therapeutic drugs. We screened literature from databases such as PubMed, ScienceDirect, and Google scholar, emphasizing the diverse targeting mechanisms of neuro degeneration explored in in-vitro models. The results revealed studies in which different types of chemicals and environmental agents were used for in-vitro development of Alzheimer-targeting mechanisms of neurodegeneration. Studies using chemically induced in-vitro AD models included in this systematic review will contribute to a deeper understanding of AD. However, none of these models can reproduce all the characteristics of disease progression seen in the majority of Alzheimer's disease subtypes. Additional modifications would be required to replicate the complex conditions of human AD in an exact manner. In-vitro models of Alzheimer's disease developed using chemicals and environmental agents are instrumental in providing insights into the disease's pathophysiology; therefore, chemical-induced in-vitro AD models will continue to play vital role in future AD research. This systematic screening revealed the pivotal role of chemical-induced in-vitro AD models in advancing our understanding of AD pathophysiology and is therefore important to understand the potential of these chemicals in AD pathogenesis.

5.
CNS Neurol Disord Drug Targets ; 21(5): 399-408, 2022.
Article in English | MEDLINE | ID: mdl-34365961

ABSTRACT

Autism spectrum disorder (ASD) is a composite disorder of brain development with uncertain etiology and pathophysiology. Genetic factors are important in ASD causation, although environmental factors are also involved in ASD pathophysiology. Environmental factors might affect the genetic processes of brain development through the modulation of molecular pathways that might be involved with ASD. Valproic acid and propionic acid are the major environmental factors that serve as medicine and food preservative. VPA is used as an anti-epileptic medicine, but it has adverse effects on pregnant women and alters the developmental patterns of the embryo. It is a multi- targeting agent and affects 5-HT, GABA, etc. PPA is a secondary metabolite of gut microbiota that is commonly used as a food preservative. PPA plays a significant role in ASD causation by altering the several developmental molecular pathways like PTEN/Akt, mTOR/Gskß, Cytokines activated pathways, etc., at the prenatal and neonatal stage. Moreover, ASD complexity might be increased by other important factors like vitamin A deficiency. Vitamin A is important for cortical brain development and neuronal cell differentiation. Additionally, several important genes such as RELN, Lhx2, CREB, IL-6, NMDA, BDNF, etc., are also altered in ASD and involved in brain development, central nervous system, and enteric nervous system. These genes affect neuronal differentiation, hyperactivity, oxidative stress, oxytocin, and GABA imbalance lead to improper behavior in autistic individuals. These genes are also studied in VPA and PPA ASD-like animal models. In this review, we explored the mechanical pathways that might be altered with VPA and PPA exposures at the embryonic developmental stage or neonatal developmental stage.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Animals , Autism Spectrum Disorder/metabolism , Behavior, Animal , Disease Models, Animal , Female , Food Preservatives , Humans , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Propionates , Valproic Acid/adverse effects , gamma-Aminobutyric Acid
6.
Phytother Res ; 35(8): 4456-4484, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34132429

ABSTRACT

Traditional Indian medical practices (Ayurveda, Siddha, Unani, and homeopathy) are a vast reservoir of knowledge about medicinal plants. The promising pharmacological properties of these plants have paved the way for developing therapy against novel Coronavirus (CoV) infection. The current review will summarize published works of literature on the effects of traditional Indian medicinal plants against acute respiratory infection (COVID-19, SARS, Influenza, and Respiratory syncytial virus infection) and registered clinical trials of traditional Indian herbal medicines in COVID-19. The current study aims to comprehensively evaluate the data of traditional Indian medicinal plants to warrant their use in COVID-19 management. PubMed, Embase, and Cochrane databases were searched along with different clinical trial databases. A total of 22 relevant traditional Indian medicinal plants (35 relevant studies) were included in the current study having potential antiviral properties against virus-induced respiratory illness along with promising immunomodulatory and thrombolytic properties. Further, 36 randomized and nonrandomized registered clinical trials were also included that were aimed at evaluating the efficacy of herbal plants or their formulations in COVID-19 management. The antiviral, immunomodulatory, and thrombolytic activities of the traditional Indian medicinal plants laid down a strong rationale for their use in developing therapies against SARS-CoV-2 infection. The study identified some important potential traditional Indian medicinal herbs such as Ocimum tenuiflorum, Tinospora cordifolia, Achyranthes bidentata, Cinnamomum cassia, Cydonia oblonga, Embelin ribes, Justicia adhatoda, Momordica charantia, Withania somnifera, Zingiber officinale, Camphor, and Kabusura kudineer, which could be used in therapeutic strategies against SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Medicine, Ayurvedic , Plant Preparations/therapeutic use , Plants, Medicinal , Humans , India , Plants, Medicinal/chemistry , Randomized Controlled Trials as Topic
7.
Life Sci ; 258: 118207, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32777301

ABSTRACT

Due to COVID 19 outbreak many studies are being conducted for therapeutic strategies and vaccines but detection methods play an important role in the containment of the disease. Hence, this systematic review aims to evaluate the effectiveness of the molecular detection techniques in COVID-19. For framing the systematic review 6 literature databases (PubMed, EMBASE, OVID, Web of Science, Scopus and Google Scholar) were searched for relevant studies and articles were screened for relevant content till 25th April 2020. Observations from this systematic review reveal the utility of RT-PCR with serological testing as one such method cannot correlate with accurate results. Availability of point of care devices do not conform to sensitivity and specificity in comparison to the conventional methods due to lack of clinical investigations. Pivotal aim of molecular and serological research is the development of detection methods that can support the clinical decision making of patients suspected with SARS-CoV-2. However, none of the methods were 100% sensitive and specific; hence additional studies are required to overcome the challenges addressed here. We hope that the present article with its observations and suggestions will assist the researchers to realize this vision in future.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Humans , Pandemics , Pneumonia, Viral/blood , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
8.
Virol Sin ; 35(3): 290-304, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607866

ABSTRACT

The recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Disease Models, Animal , Middle East Respiratory Syndrome Coronavirus , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus , Animals , Betacoronavirus/pathogenicity , COVID-19 , Camelids, New World , Camelus , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Mice , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/physiopathology , Severe Acute Respiratory Syndrome/therapy , Swine
9.
Indian J Pharmacol ; 51(5): 359-365, 2019.
Article in English | MEDLINE | ID: mdl-31831931

ABSTRACT

Celiac disease is a lifelong, immunological disorder induced by dietary protein-gluten, in a genetically susceptible populations, resulting in different clinical manifestations, the release of antibodies, and damage to the intestinal mucosa. The only recommended therapy for the disease is to strictly follow a gluten-free diet (GFD), which is difficult to comply with. A GFD is found to be ineffective in some active Celiac disease cases. Therefore, there is an unmet need for an alternative nondietary therapeutic approach. The review focuses on the novel drug targets for Celiac disease.


Subject(s)
Celiac Disease/drug therapy , Drug Discovery , Animals , Celiac Disease/diet therapy , Celiac Disease/physiopathology , Diet, Gluten-Free , Humans , Molecular Targeted Therapy , Patient Compliance
10.
Indian J Pharmacol ; 51(6): 418-425, 2019.
Article in English | MEDLINE | ID: mdl-32029967

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an untreatable and fatal neurodegenerative disease that is identified by the loss of motor neurons in the spinal cord, brain stem, and motor cortex which theatrically reduces life expectancy. Although the primary cause of ALS remains unclear, its heterogeneity put forward for consideration of association with various factors, including endogenous and/or environmental ones, which may be involved in progressive motor neuron stress that causes activation of different cell death pathways. It is hypothesized that this disease is triggered by factors related to genetic, environmental, and age-dependent risk. In spite of large neurobiological, molecular and genetic research, at the beginning of the 21st century, ALS still remains one of the most devastating neurodegenerative diseases because of the lack of effective therapeutic targets. It is a challenge for the clinical and scientific community. A better understanding of the etiology of ALS is necessary to develop specific targets of this progressive neurodegenerative disease. This review states about the current knowledge of targets in ALS research. This review provides an overview of the contribution of different targets like mitochondrial dysfunction, glutamate transport and excitotoxicity, protein accumulation, Oxidative stress, neuromuscular junction, microglia, and other molecular targets in the pathogenesis of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axons/metabolism , Glutamic Acid/metabolism , Humans , Mitochondria/metabolism , Mutation , Neuromuscular Junction/metabolism , Neuroprotective Agents/therapeutic use , Oxidative Stress , Protein Aggregates , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...