Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Am J Respir Crit Care Med ; 209(2): 164-174, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37938162

ABSTRACT

Rationale: Respiratory metagenomics (RMg) needs evaluation in a pilot service setting to determine utility and inform implementation into routine clinical practice. Objectives: Feasibility, performance, and clinical impacts on antimicrobial prescribing and infection control were recorded during a pilot RMg service. Methods: RMg was performed on 128 samples from 87 patients with suspected lower respiratory tract infection (LRTI) on two general and one specialist respiratory ICUs at Guy's and St Thomas' NHS Foundation Trust, London. Measurements and Main Results: During the first 15 weeks, RMg provided same-day results for 110 samples (86%), with a median turnaround time of 6.7 hours (interquartile range = 6.1-7.5 h). RMg was 93% sensitive and 81% specific for clinically relevant pathogens compared with routine testing. Forty-eight percent of RMg results informed antimicrobial prescribing changes (22% escalation; 26% deescalation) with escalation based on speciation in 20 out of 24 cases and detection of acquired-resistance genes in 4 out of 24 cases. Fastidious or unexpected organisms were reported in 21 samples, including anaerobes (n = 12), Mycobacterium tuberculosis, Tropheryma whipplei, cytomegalovirus, and Legionella pneumophila ST1326, which was subsequently isolated from the bedside water outlet. Application to consecutive severe community-acquired LRTI cases identified Staphylococcus aureus (two with SCCmec and three with luk F/S virulence determinants), Streptococcus pyogenes (emm1-M1uk clone), S. dysgalactiae subspecies equisimilis (STG62647A), and Aspergillus fumigatus with multiple treatments and public health impacts. Conclusions: This pilot study illustrates the potential of RMg testing to provide benefits for antimicrobial treatment, infection control, and public health when provided in a real-world critical care setting. Multicenter studies are now required to inform future translation into routine service.


Subject(s)
Anti-Infective Agents , Respiratory Tract Infections , Humans , Pilot Projects , London , Intensive Care Units , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy
2.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38050797

ABSTRACT

A novel bacterial strain, GSTT-20T was isolated from an infected, prosthetic endovascular graft explanted from a shepherd in London, United Kingdom. This strain was an aerobic, catalase-positive, oxidase-negative, Gram-stain-negative, motile, curved rod. It grew on blood agar, chocolate agar and MacConkey agar incubated at 37 °C in an aerobic environment after 48 h, appearing as yellow, mucoid colonies. Analysis of the complete 16S rRNA gene sequence showed closest similarity to Variovorax paradoxus with 99.6 % identity and Variovorax boronicumulans with 99.5 % identity. Phylogenetic analysis of the 16S rRNA gene sequence and phylogenomic analysis of single nucleotide polymorphisms within 1530 core genes showed GSTT-20T forms a distinct lineage in the genus Variovorax of the family Comamonadaceae. In silico DNA-DNA hybridization assays against GSTT-20T were estimated at 32.1 % for V. boronicumulans and 31.9 % for V. paradoxus. Genome similarity based on average nucleotide identity was 87.50 % when comparing GSTT-20T to V. paradoxus. Based on these results, the strain represented a novel species for which the name Variovorax durovernensis sp. nov. was proposed. The type strain is GSTT-20T (NCTC 14621T=CECT 30390T).


Subject(s)
Comamonadaceae , Fatty Acids , Humans , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Agar , Soil Microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Base Composition , Sequence Analysis, DNA , Phospholipids/analysis
3.
Microb Genom ; 9(8)2023 08.
Article in English | MEDLINE | ID: mdl-37590039

ABSTRACT

Rapid respiratory viral whole genome sequencing (WGS) in a clinical setting can inform real-time outbreak and patient treatment decisions, but the feasibility and clinical utility of influenza A virus (IAV) WGS using Nanopore technology has not been demonstrated. A 24 h turnaround Nanopore IAV WGS protocol was performed on 128 reverse transcriptase PCR IAV-positive nasopharyngeal samples taken over seven weeks of the 2022-2023 winter influenza season, including 25 from patients with nosocomial IAV infections and 102 from patients attending the Emergency Department. WGS results were reviewed collectively alongside clinical details for interpretation and reported to clinical teams. All eight segments of the IAV genome were recovered for 97/128 samples (75.8 %) and the haemagglutinin gene for 117/128 samples (91.4 %). Infection prevention and control identified nosocomial IAV infections in 19 patients across five wards. IAV WGS revealed two separate clusters on one ward and excluded transmission across different wards with contemporaneous outbreaks. IAV WGS also identified neuraminidase inhibitor resistance in a persistently infected patient and excluded avian influenza in a sample taken from an immunosuppressed patient with a history of travel to Singapore which had failed PCR subtyping. Accurate IAV genomes can be generated in 24 h using a Nanopore protocol accessible to any laboratory with SARS-CoV-2 Nanopore sequencing capacity. In addition to replicating reference laboratory surveillance results, IAV WGS can identify antiviral resistance and exclude avian influenza. IAV WGS also informs management of nosocomial outbreaks, though molecular and clinical epidemiology were concordant in this study, limiting the impact on decision-making.


Subject(s)
COVID-19 , Cross Infection , Influenza A virus , Influenza, Human , Nanopores , Humans , Feasibility Studies , Influenza, Human/drug therapy , Influenza, Human/epidemiology , SARS-CoV-2/genetics , Disease Outbreaks , Cross Infection/epidemiology , Influenza A virus/genetics
4.
Clin Microbiol Infect ; 29(7): 887-890, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36925107

ABSTRACT

OBJECTIVES: Epidemiological and whole-genome sequencing analysis of an ongoing outbreak of Streptococcus pyogenes (Group A Streptococcus) in London (United Kingdom). METHODS: Prospective identification of Group A Streptococcus cases from a diagnostic laboratory serving central and south London between 27 November and 10 December 2022. Case notes were reviewed and isolates were retrieved. Case numbers were compared with the previous 5 years. Whole-genome sequencing was performed with long-read, nanopore technology for emm typing and identification of superantigen genes. Associations of pathogen-related factors with an invasive disease were assessed by single-variable and multi-variable logistic regression. RESULTS: Case numbers began increasing in October 2022 from a baseline of 2.0 cases per day, and in December 2022, the average daily case numbers reached 10.8 cases per day, four-fold the number usually seen in winter. A total of 113 cases were identified during the prospective study period. Three quarters (86/113, 76%) were paediatric cases, including 2 deaths. Of 113 cases, 11 (10%) were invasive. In total, 56 isolates were successfully sequenced, including 10 of 11 (91%) invasive isolates. The emm12 (33/56, 59%) and emm1 (9/56, 16%) types were predominant, with 7 of 9 (78%) emm1 isolates being from the M1uk clone. The majority of invasive isolates had superantigen genes spea (7/10, 70%) and spej (8/10, 80%), whereas, in non-invasive isolates, these superantigen genes were found less frequently (spea: 5/46, 11% and spej: 7/46, 15%). By multivariable analysis of pathogen-related factors, spea (OR 8.9, CI 1.4-57, p 0.020) and spej (OR 12, CI 1.8-78, p 0.011) were associated with invasive disease. CONCLUSIONS: emm12 and emm1 types predominate in the ongoing outbreak, which mainly affects children. In this outbreak, the spea and spej superantigen genes are associated with the severity of presentation.


Subject(s)
Streptococcal Infections , Streptococcus pyogenes , Child , Humans , Prospective Studies , Molecular Epidemiology , London/epidemiology , Antigens, Bacterial/genetics , United Kingdom/epidemiology , Superantigens/genetics , Disease Outbreaks , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Bacterial Outer Membrane Proteins/genetics
5.
Clin Infect Dis ; 76(6): 1125-1128, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36327795

ABSTRACT

The management of coronavirus disease 2019 has become more complex due to the expansion of available therapies. The presence of severe acute respiratory syndrome coronavirus 2 variants and mutations further complicates treatment due to their differing susceptibilities to therapies. Here we outline the use of real-time whole genome sequencing to detect persistent infection, evaluate for mutations confering resistance to treatments, and guide treatment decisions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Whole Genome Sequencing , Mutation
6.
mBio ; 13(2): e0379821, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35297676

ABSTRACT

Numerous studies have shown that a prior SARS-CoV-2 infection can greatly enhance the antibody response to COVID-19 vaccination, with this so called "hybrid immunity" leading to greater neutralization breadth against SARS-CoV-2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID-19-vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID-19-double-vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the Delta (B.1.617.2) variant. Rapid production of spike-reactive IgG was observed in the vaccinated group, providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS-CoV-2 variants of concern was observed in the BTI group compared to the infection group, including neutralization of the Omicron (B.1.1.529) variant. This study provides important insights into population immunity where transmission levels remain high and in the context of new or emerging variants of concern. IMPORTANCE COVID-19 vaccines have been vital in controlling SARS-CoV-2 infections and reducing hospitalizations. However, breakthrough SARS-CoV-2 infections (BTI) occur in some vaccinated individuals. Here, we study how BTI impacts on the potency and the breadth of the neutralizing antibody response. We show that a Delta infection in COVID-19-vaccinated individuals provides potent neutralization against the current SARS-CoV-2 variants of concern, including the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2/genetics
7.
BMJ Open ; 12(2): e055474, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35135773

ABSTRACT

BACKGROUND: The Alpha variant (B.1.1.7 lineage) of SARS-CoV-2 emerged and became the dominant circulating variant in the UK in late 2020. Current literature is unclear on whether the Alpha variant is associated with increased severity. We linked clinical data with viral genome sequence data to compare admitted cases between SARS-CoV-2 waves in London and to investigate the association between the Alpha variant and the severity of disease. METHODS: Clinical, demographic, laboratory and viral sequence data from electronic health record systems were collected for all cases with a positive SARS-CoV-2 RNA test between 13 March 2020 and 17 February 2021 in a multisite London healthcare institution. Multivariate analysis using logistic regression assessed risk factors for severity as defined by hypoxia at admission. RESULTS: There were 5810 SARS-CoV-2 RNA-positive cases of which 2341 were admitted (838 in wave 1 and 1503 in wave 2). Both waves had a temporally aligned rise in nosocomial cases (96 in wave 1 and 137 in wave 2). The Alpha variant was first identified on 15 November 2020 and increased rapidly to comprise 400/472 (85%) of sequenced isolates from admitted cases in wave 2. A multivariate analysis identified risk factors for severity on admission, such as age (OR 1.02, 95% CI 1.01 to 1.03, for every year older; p<0.001), obesity (OR 1.70, 95% CI 1.28 to 2.26; p<0.001) and infection with the Alpha variant (OR 1.68, 95% CI 1.26 to 2.24; p<0.001). CONCLUSIONS: Our analysis is the first in hospitalised cohorts to show increased severity of disease associated with the Alpha variant. The number of nosocomial cases was similar in both waves despite the introduction of many infection control interventions before wave 2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Humans , London/epidemiology , Pandemics , RNA, Viral/genetics , Severity of Illness Index
8.
J Clin Virol ; 147: 105080, 2022 02.
Article in English | MEDLINE | ID: mdl-35086043

ABSTRACT

BACKGROUND: Viral diversity presents an ongoing challenge for diagnostic tests, which need to accurately detect all circulating variants. The Abbott Global Surveillance program monitors severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and their impact on diagnostic test performance. OBJECTIVES: To evaluate the capacity of Abbott molecular, antigen, and serologic assays to detect circulating SARS-CoV-2 variants, including all current variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta). STUDY DESIGN: Dilutions of variant virus cultures (B.1.1.7, B.1.351, B.1.429, B.1.526.1, B.1.526.2, B.1.617.1, B.1.617.2, P.1, R.1 and control isolate WA1) and a panel of N = 248 clinical samples from patients with sequence confirmed variant infections (B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, B.1.526.1, B.1.526.2, P.1, P.2, R.1) were evaluated on at least one assay: Abbott ID NOW COVID-19, m2000 RealTime SARS-CoV-2, Alinity m SARS-CoV-2, and Alinity m Resp-4-Plex molecular assays; the BinaxNOW COVID-19 Ag Card and Panbio COVID-19 Ag Rapid Test Device; and the ARCHITECT/Alinity i SARS-CoV-2 IgG and AdviseDx IgM assays, Panbio COVID-19 IgG assay, and ARCHITECT/Alinity i AdviseDx SARS-CoV-2 IgG II assay. RESULTS: Consistent with in silico predictions, each molecular and antigen assay detected VOC virus cultures with equivalent sensitivity to the WA1 control strain. Notably, 100% of all tested variant patient specimens were detected by molecular assays (N = 197 m2000, N = 88 Alinity m, N = 99 ID NOW), and lateral flow assays had a sensitivity of >94% for specimens with genome equivalents (GE) per device above 4 log (85/88, Panbio; 54/57 Binax). Furthermore, Abbott antibody assays detected IgG and IgM in 94-100% of sera from immune competent B.1.1.7 patients 15-26 days after symptom onset. CONCLUSIONS: These data confirm variant detection for 11 SARS-CoV-2 assays, which is consistent with each assay target region being highly conserved. Importantly, alpha, beta, gamma, and delta VOCs were detected by molecular and antigen assays, indicating that these tests may be suitable for widescale use where VOCs predominate.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Sensitivity and Specificity , Serologic Tests
9.
Clin Microbiol Infect ; 28(1): 93-100, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34400345

ABSTRACT

OBJECTIVES: To analyse nosocomial transmission in the early stages of the coronavirus 2019 (COVID-19) pandemic at a large multisite healthcare institution. Nosocomial incidence is linked with infection control interventions. METHODS: Viral genome sequence and epidemiological data were analysed for 574 consecutive patients, including 86 nosocomial cases, with a positive PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first 19 days of the pandemic. RESULTS: Forty-four putative transmission clusters were found through epidemiological analysis; these included 234 cases and all 86 nosocomial cases. SARS-CoV-2 genome sequences were obtained from 168/234 (72%) of these cases in epidemiological clusters, including 77/86 nosocomial cases (90%). Only 75/168 (45%) of epidemiologically linked, sequenced cases were not refuted by applying genomic data, creating 14 final clusters accounting for 59/77 sequenced nosocomial cases (77%). Viral haplotypes from these clusters were enriched 1-14x (median 4x) compared to the community. Three factors implicated unidentified cases in transmission: (a) community-onset or indeterminate cases were absent in 7/14 clusters (50%), (b) four clusters (29%) had additional evidence of cryptic transmission, and (c) in three clusters (21%) diagnosis of the earliest case was delayed, which may have facilitated transmission. Nosocomial cases decreased to low levels (0-2 per day) despite continuing high numbers of admissions of community-onset SARS-CoV-2 cases (40-50 per day) and before the impact of introducing universal face masks and banning hospital visitors. CONCLUSION: Genomics was necessary to accurately resolve transmission clusters. Our data support unidentified cases-such as healthcare workers or asymptomatic patients-as important vectors of transmission. Evidence is needed to ascertain whether routine screening increases case ascertainment and limits nosocomial transmission.


Subject(s)
COVID-19 , Cross Infection , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/transmission , Cross Infection/epidemiology , Disease Outbreaks , Genome, Viral , Genomics , Hospitals , Humans , Pandemics
10.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34784976

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
11.
Nat Microbiol ; 6(11): 1433-1442, 2021 11.
Article in English | MEDLINE | ID: mdl-34654917

ABSTRACT

COVID-19 vaccine design and vaccination rollout need to take into account a detailed understanding of antibody durability and cross-neutralizing potential against SARS-CoV-2 and emerging variants of concern (VOCs). Analyses of convalescent sera provide unique insights into antibody longevity and cross-neutralizing activity induced by variant spike proteins, which are putative vaccine candidates. Using sera from 38 individuals infected in wave 1, we show that cross-neutralizing activity can be detected up to 305 days pos onset of symptoms, although sera were less potent against B.1.1.7 (Alpha) and B1.351 (Beta). Over time, despite a reduction in overall neutralization activity, differences in sera neutralization potency against SARS-CoV-2 and the Alpha and Beta variants decreased, which suggests that continued antibody maturation improves tolerance to spike mutations. We also compared the cross-neutralizing activity of wave 1 sera with sera from individuals infected with the Alpha, the Beta or the B.1.617.2 (Delta) variants up to 79 days post onset of symptoms. While these sera neutralize the infecting VOC and parental virus to similar levels, cross-neutralization of different SARS-CoV-2 VOC lineages is reduced. These findings will inform the optimization of vaccines to protect against SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines , Female , Humans , Immunization, Passive , Immunoglobulin G , Immunoglobulin M , Male , Middle Aged , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Young Adult , COVID-19 Serotherapy
12.
PLoS One ; 16(9): e0256813, 2021.
Article in English | MEDLINE | ID: mdl-34525109

ABSTRACT

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Hot Temperature , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Inactivation , COVID-19/epidemiology , COVID-19/virology , Epidemics/prevention & control , Humans , Nasopharynx/virology , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/physiology , Sensitivity and Specificity , Specimen Handling/methods , Workflow
14.
Med ; 2(6): 701-719.e19, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34223402

ABSTRACT

BACKGROUND: Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS: We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS: The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 µg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS: Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING: This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Humans , Malaria/chemically induced , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Vaccination , Vaccines, Synthetic
15.
Lancet Microbe ; 2(9): e461-e471, 2021 09.
Article in English | MEDLINE | ID: mdl-34226893

ABSTRACT

BACKGROUND: Lateral flow devices (LFDs) for rapid antigen testing are set to become a cornerstone of SARS-CoV-2 mass community testing, although their reduced sensitivity compared with PCR has raised questions of how well they identify infectious cases. Understanding their capabilities and limitations is, therefore, essential for successful implementation. We evaluated six commercial LFDs and assessed their correlation with infectious virus culture and PCR cycle threshold (Ct) values. METHODS: In a single-centre, laboratory evaluation study, we did a head-to-head comparison of six LFDs commercially available in the UK: Innova Rapid SARS-CoV-2 Antigen Test, Spring Healthcare SARS-CoV-2 Antigen Rapid Test Cassette, E25Bio Rapid Diagnostic Test, Encode SARS-CoV-2 Antigen Rapid Test Device, SureScreen COVID-19 Rapid Antigen Test Cassette, and SureScreen COVID-19 Rapid Fluorescence Antigen Test. We estimated the specificities and sensitivities of the LFDs using stored naso-oropharyngeal swabs collected at St Thomas' Hospital (London, UK) for routine diagnostic SARS-CoV-2 testing by real-time RT-PCR (RT-rtPCR). Swabs were from inpatients and outpatients from all departments of St Thomas' Hospital, and from health-care staff (all departments) and their household contacts. SARS-CoV-2-negative swabs from the same population (confirmed by RT-rtPCR) were used for comparative specificity determinations. All samples were collected between March 23 and Oct 27, 2020. We determined the limit of detection (LOD) for each test using viral plaque-forming units (PFUs) and viral RNA copy numbers of laboratory-grown SARS-CoV-2. Additionally, LFDs were selected to assess the correlation of antigen test result with RT-rtPCR Ct values and positive viral culture in Vero E6 cells. This analysis included longitudinal swabs from five infected inpatients with varying disease severities. Furthermore, the sensitivities of available LFDs were assessed in swabs (n=23; collected from Dec 4, 2020, to Jan 12, 2021) confirmed to be positive (RT-rtPCR and whole-genome sequencing) for the B.1.1.7 variant, which was the dominant genotype in the UK at the time of study completion. FINDINGS: All LFDs showed high specificity (≥98·0%), except for the E25Bio test (86·0% [95% CI 77·9-99·9]), and most tests reliably detected 50 PFU/test (equivalent SARS-CoV-2 N gene Ct value of 23·7, or RNA copy number of 3 × 106/mL). Sensitivities of the LFDs on clinical samples ranged from 65·0% (55·2-73·6) to 89·0% (81·4-93·8). These sensitivities increased to greater than 90% for samples with Ct values of lower than 25 for all tests except the SureScreen fluorescence (SureScreen-F) test. Positive virus culture was identified in 57 (40·4%) of 141 samples; 54 (94·7%) of the positive cultures were from swabs with Ct values lower than 25. Among the three LFDs selected for detailed comparisons (the tests with highest sensitivity [Innova], highest specificity [Encode], and alternative technology [SureScreen-F]), sensitivity of the LFDs increased to at least 94·7% when only including samples with detected viral growth. Longitudinal studies of RT-rtPCR-positive samples (tested with Innova, Encode, and both SureScreen-F and the SureScreen visual [SureScreen-V] test) showed that most of the tests identified all infectious samples as positive. Test performance (assessed for Innova and SureScreen-V) was not affected when reassessed on swabs positive for the UK variant B.1.1.7. INTERPRETATION: In this comprehensive comparison of antigen LFDs and virus infectivity, we found a clear relationship between Ct values, quantitative culture of infectious virus, and antigen LFD positivity in clinical samples. Our data support regular testing of target groups with LFDs to supplement the current PCR testing capacity, which would help to rapidly identify infected individuals in situations in which they would otherwise go undetected. FUNDING: King's Together Rapid COVID-19, Medical Research Council, Wellcome Trust, Huo Family Foundation, UK Department of Health, National Institute for Health Research Comprehensive Biomedical Research Centre.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics
16.
J Infect ; 83(2): 167-174, 2021 08.
Article in English | MEDLINE | ID: mdl-34146598

ABSTRACT

OBJECTIVES: Assess the feasibility and impact of nanopore-based 16S rRNA gene sequencing (Np16S) service on antibiotic treatment for acute severe pneumonia on the intensive care unit (ICU). METHODS: Speciation and sequencing accuracy of Np16S on isolates with bioinformatics pipeline optimisation, followed by technical evaluation including quality checks and clinical-reporting criteria analysing stored respiratory samples using single-sample flow cells. Pilot service comparing Np16S results with all routine respiratory tests and impact on same-day antimicrobial prescribing. RESULTS: Np16S correctly identified 140/167 (84%) isolates after 1h sequencing and passed quality control criteria including reproducibility and limit-of-detection. Sequencing of 108 stored respiratory samples showed concordance with routine culture in 80.5% of cases and established technical and clinical reporting criteria. A 10-week same-day pilot Np16S service analysed 45 samples from 37 patients with suspected community (n=15) or hospital acquired (n=30) pneumonia. Np16S showed concordance compared with all routine culture or molecular tests for 27 (82%) of 33 positive samples. It identified the causative pathogen in 32/33 (97%) samples and contributed to antimicrobial treatment changes for 30 patients (67%). CONCLUSIONS: This study demonstrates feasibility of providing a routine same-day nanopore sequencing service that makes a significant contribution to early antibiotic prescribing for bacterial pneumonia in the ICU.


Subject(s)
Nanopores , Genes, rRNA , Humans , Intensive Care Units , RNA, Ribosomal, 16S/genetics , Reproducibility of Results
17.
EClinicalMedicine ; 36: 100910, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34124634

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) in Enterobacterales is a global health threat. Capacity for individual-level surveillance remains limited in many countries, whilst population-level surveillance approaches could inform empiric antibiotic treatment guidelines. METHODS: In this exploratory study, a novel approach to population-level prediction of AMR in Enterobacterales clinical isolates using metagenomic (Illumina) profiling of pooled DNA extracts from human faecal samples was developed and tested. Taxonomic and AMR gene profiles were used to derive taxonomy-adjusted population-level AMR metrics. Bayesian modelling, and model comparison based on cross-validation, were used to evaluate the capacity of each metric to predict the number of resistant Enterobacterales invasive infections at a population-level, using available bloodstream/cerebrospinal fluid infection data. FINDINGS: Population metagenomes comprised samples from 177, 157, and 156 individuals in Kenya, the UK, and Cambodia, respectively, collected between September 2014 and April 2016. Clinical data from independent populations included 910, 3356 and 197 bacterial isolates from blood/cerebrospinal fluid infections in Kenya, the UK and Cambodia, respectively (samples collected between January 2010 and May 2017). Enterobacterales were common colonisers and pathogens, and faecal taxonomic/AMR gene distributions and proportions of antimicrobial-resistant Enterobacterales infections differed by setting. A model including terms reflecting the metagenomic abundance of the commonest clinical Enterobacterales species, and of AMR genes known to either increase the minimum inhibitory concentration (MIC) or confer clinically-relevant resistance, had a higher predictive performance in determining population-level resistance in clinical Enterobacterales isolates compared to models considering only AMR gene information, only taxonomic information, or an intercept-only baseline model (difference in expected log predictive density compared to best model, estimated using leave-one-out cross-validation: intercept-only model = -223 [95% credible interval (CI): -330,-116]; model considering only AMR gene information = -186 [95% CI: -281,-91]; model considering only taxonomic information = -151 [95% CI: -232,-69]). INTERPRETATION: Whilst our findings are exploratory and require validation, intermittent metagenomics of pooled samples could represent an effective approach for AMR surveillance and to predict population-level AMR in clinical isolates, complementary to ongoing development of laboratory infrastructures processing individual samples.

18.
medRxiv ; 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34127977

ABSTRACT

As SARS-CoV-2 variants continue to emerge globally, a major challenge for COVID-19 vaccination is the generation of a durable antibody response with cross-neutralizing activity against both current and newly emerging viral variants. Cross-neutralizing activity against major variants of concern (B.1.1.7, P.1 and B.1.351) has been observed following vaccination, albeit at a reduced potency, but whether vaccines based on the Spike glycoprotein of these viral variants will produce a superior cross-neutralizing antibody response has not been fully investigated. Here, we used sera from individuals infected in wave 1 in the UK to study the long-term cross-neutralization up to 10 months post onset of symptoms (POS), as well as sera from individuals infected with the B.1.1.7 variant to compare cross-neutralizing activity profiles. We show that neutralizing antibodies with cross-neutralizing activity can be detected from wave 1 up to 10 months POS. Although neutralization of B.1.1.7 and B.1.351 is lower, the difference in neutralization potency decreases at later timepoints suggesting continued antibody maturation and improved tolerance to Spike mutations. Interestingly, we found that B.1.1.7 infection also generates a cross-neutralizing antibody response, which, although still less potent against B.1.351, can neutralize parental wave 1 virus to a similar degree as B.1.1.7. These findings have implications for the optimization of vaccines that protect against newly emerging viral variants.

19.
medRxiv ; 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33851184

ABSTRACT

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna ® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/ .

20.
PLoS One ; 16(4): e0249791, 2021.
Article in English | MEDLINE | ID: mdl-33826651

ABSTRACT

During the first wave of the global COVID-19 pandemic the clinical utility and indications for SARS-CoV-2 serological testing were not clearly defined. The urgency to deploy serological assays required rapid evaluation of their performance characteristics. We undertook an internal validation of a CE marked lateral flow immunoassay (LFIA) (SureScreen Diagnostics) using serum from SARS-CoV-2 RNA positive individuals and pre-pandemic samples. This was followed by the delivery of a same-day named patient SARS-CoV-2 serology service using LFIA on vetted referrals at central London teaching hospital with clinical interpretation of result provided to the direct care team. Assay performance, source and nature of referrals, feasibility and clinical utility of the service, particularly benefit in clinical decision-making, were recorded. Sensitivity and specificity of LFIA were 96.1% and 99.3% respectively. 113 tests were performed on 108 participants during three-week pilot. 44% participants (n = 48) had detectable antibodies. Three main indications were identified for serological testing; new acute presentations potentially triggered by recent COVID-19 e.g. pulmonary embolism (n = 5), potential missed diagnoses in context of a recent COVID-19 compatible illness (n = 40), and making infection control or immunosuppression management decisions in persistently SARS-CoV-2 RNA PCR positive individuals (n = 6). We demonstrate acceptable performance characteristics, feasibility and clinical utility of using a LFIA that detects anti-spike antibodies to deliver SARS-CoV-2 serology service in adults and children. Greatest benefit was seen where there is reasonable pre-test probability and results can be linked with clinical advice or intervention. Experience from this pilot can help inform practicalities and benefits of rapidly implementing new tests such as LFIAs into clinical service as the pandemic evolves.


Subject(s)
COVID-19 Serological Testing , COVID-19 , Pandemics , SARS-CoV-2/metabolism , Adult , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Male , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...