Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 27(14): 145305, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25791088

ABSTRACT

Band gap control by an external field is useful in various optical, infrared and THz applications. However, widely tunable band gaps are still not practical due to a variety of reasons. Using the orthogonal tight-binding method for π-electrons, we have investigated the effect of the external electric field on a subclass of monolayer chevron-type graphene nanoribbons that can be referred to as jagged graphene nanoribbons. A classification of these ribbons was proposed and band gaps for applied fields up to the SiO2 breakdown strength (1 V nm(-1)) were calculated. According to the tight-binding model, band gap opening (or closing) takes place for some types of jagged graphene nanoribbons in the external electric field that lies on the plane of the structure and perpendicular to its longitudinal axis. Tunability of the band gap up to 0.6 eV is attainable for narrow ribbons. In the case of jagged ribbons with armchair edges larger jags forming a chevron pattern of the ribbon enhance the controllability of the band gap. For jagged ribbons with zigzag and armchair edges regions of linear and quadratic dependence of the band gap on the external electric field can be found that are useful in devices with controllable modulation of the band gap.

2.
Sci Rep ; 4: 7191, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25424525

ABSTRACT

Thanks to its high electrical conductivity, a graphene plane presents a good shielding efficiency against GHz electromagnetic radiations. Several graphene planes separated by thin polymer spacers add their conductivities arithmetically, because each of them conserves the intrinsic properties of isolated graphene. Maximum absorption of radiations for frequency around 30 GHz is achieved with six separated graphene planes, which is the optimum number. This remarkable result is demonstrated experimentally from electromagnetic measurements performed in the Ka band on a series of multilayers obtained by piling 1, 2, 3... graphene/PMMA units on a silica substrate. Theoretical calculations convincingly explain the observed absorption and transmission data in the GHz domain. It is concluded that graphene/PMMA multilayers can be used as an efficient optically transparent and flexible shielding media.

SELECTION OF CITATIONS
SEARCH DETAIL
...